| BMC Microbiology | |
| Members of the Sinorhizobium meliloti ChvI regulon identified by a DNA binding screen | |
| Trevor C Charles2  Louise Bélanger1  | |
| [1] Present address: Prevtec microbia inc., Saint-Hyacinthe, Québec, Canada;Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada | |
| 关键词: DNA binding assay; Transcriptional regulation; Signal transduction; chvI regulon; Alfalfa nodulation; Exopolysaccharide; DNA-binding; Response regulator; Rhizobia; | |
| Others : 1143625 DOI : 10.1186/1471-2180-13-132 |
|
| received in 2012-10-09, accepted in 2013-02-08, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
The Sinorhizobium meliloti ExoS/ChvI two component regulatory system is required for N2-fixing symbiosis and exopolysaccharide synthesis. Orthologous systems are present in other Alphaproteobacteria, and in many instances have been shown to be necessary for normal interactions with corresponding eukaryotic hosts. Only a few transcriptional regulation targets have been determined, and as a result there is limited understanding of the mechanisms that are controlled by the system.
Results
In an attempt to better define the members of the regulon, we have applied a simple in vitro electrophoretic screen for DNA fragments that are bound by the ChvI response regulator protein. Several putative transcriptional targets were identified and three were further examined by reporter gene fusion experiments for transcriptional regulation. Two were confirmed to be repressed by ChvI, while one was activated by ChvI.
Conclusions
Our results suggest a role for ChvI as both a direct activator and repressor of transcription. The identities and functions of many of these genes suggest explanations for some aspects of the pleiotropic phenotype of exoS and chvI mutants. This work paves the way for in depth characterization of the ExoS/ChvI regulon and its potential role in directing bacteria-host relationships.
【 授权许可】
2013 Bélanger and Charles; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150329143221608.pdf | 770KB | ||
| Figure 4. | 49KB | Image | |
| Figure 3. | 50KB | Image | |
| Figure 2. | 49KB | Image | |
| Figure 1. | 110KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A: The Pfam protein families database. Nucleic Acids Res 2010, 38:D211-D222.
- [2]Galperin MY: Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 2006, 188:4169-4182.
- [3]Gao R, Stock AM: Biological insights from structures of two-component proteins. Annu Rev Microbiol 2009, 63:133-154.
- [4]Charles TC, Nester EW: A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. J Bacteriol 1993, 175:6614-6625.
- [5]Sola-Landa A, Pizarro-Cerdá J, Grilló MJ, Moreno E, Moriyón I, Blasco JM, Gorvel JP, López-Goñi I: A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence. Mol Microbiol 1998, 29:125-138.
- [6]Viadas C, Rodríguez MC, Sangari FJ, Gorvel JP, García-Lobo JM, López-Goñi I: Transcriptome analysis of the Brucella abortus BvrR/BvrS two-component regulatory system. PLoS One 2010, 5:e10216.
- [7]Quebatte M, Dehio M, Tropel D, Basler A, Toller I, Raddatz G, Engel P, Huser S, Schein H, Lindroos HL, Andersson SGE, Dehio C: The BatR/BatS two-component regulatory system controls the adaptive response of Bartonella henselae during human endothelial cell infection. J Bacteriol 2010, 192:3352-3367.
- [8]Vanderlinde EM, Yost CK: Mutation of the sensor kinase chvG in Rhizobium leguminosarum negatively impacts cellular metabolism, outer membrane stability, and symbiosis. J Bacteriol 2012, 194:768-777.
- [9]Cheng HP, Walker GC: Succinoglycan production by Rhizobium meliloti is regulated through the ExoS-ChvI two-component regulatory system. J Bacteriol 1998, 180:20-26.
- [10]Bélanger L, Dimmick KA, Fleming JS, Charles TC: Null mutations in Sinorhizobium meliloti exoS and chvI demonstrate the importance of this two-component regulatory system for symbiosis. Mol Microbiol 2009, 74:1223-1237.
- [11]Osterås M, Stanley J, Finan TM: Identification of Rhizobium-specific intergenic mosaic elements within an essential two-component regulatory system of Rhizobium species. J Bacteriol 1995, 177:5485-5494.
- [12]Wang C, Kemp J, Da Fonseca IO, Equi RC, Sheng X, Charles TC, Sobral BWS: Sinorhizobium meliloti 1021 loss-of-function deletion mutation in chvI and its phenotypic characteristics. Mol Plant Microbe Interact 2010, 23:153-160.
- [13]Chen EJ, Sabio EA, Long SR: The periplasmic regulator ExoR inhibits ExoS/ChvI two-component signalling in Sinorhizobium meliloti. Mol Microbiol 2008, 69:1290-1303.
- [14]Lu H-Y, Luo L, Yang M-H, Cheng H-P: Sinorhizobium meliloti ExoR is the target of periplasmic proteolysis. J Bacteriol 2012, 194:4029-4040.
- [15]Pinedo CA, Gage DJ: HPrK regulates succinate-mediated catabolite repression in the gram-negative symbiont Sinorhizobium meliloti. J Bacteriol 2009, 191:298-309.
- [16]Wells DH, Chen EJ, Fisher RF, Long SR: ExoR is genetically coupled to the ExoS-ChvI two-component system and located in the periplasm of Sinorhizobium meliloti. Mol Microbiol 2007, 64:647-664.
- [17]Chen E, Fisher R, Perovich V, Sabio E, Long S: Identification of direct transcriptional target genes of ExoS/ChvI two-component signaling in Sinorhizobium meliloti. J Bacteriol 2009, 191:6833-6842.
- [18]Garner MM, Revzin A: A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 1981, 9:3047-3060.
- [19]Liu P, Wood D, Nester EW: Phosphoenolpyruvate carboxykinase is an acid-induced, chromosomally encoded virulence factor in Agrobacterium tumefaciens. J Bacteriol 2005, 187:6039-6045.
- [20]Cowie A, Cheng J, Sibley CD, Fong Y, Zaheer R, Patten CL, Morton RM, Golding GB, Finan TM: An integrated approach to functional genomics: construction of a novel reporter gene fusion library for Sinorhizobium meliloti. Appl Environ Microbiol 2006, 72:7156-7167.
- [21]Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Pujar A, Shearer AG, Travers M, Weerasinghe D, Zhang P, Karp PD: The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 2012, 40:D742-D753.
- [22]Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y: KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008, 36:D480-D484.
- [23]Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C: STRING 8--a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 2009, 37:D412-D416.
- [24]Arias A, Cerveñansky C: Galactose metabolism in Rhizobium meliloti L5-30. J Bacteriol 1986, 167:1092-1094.
- [25]Geddes BA, Oresnik IJ: Inability to catabolize galactose leads to increased ability to compete for nodule occupancy in Sinorhizobium meliloti. J Bacteriol 2012, 194:5044-5053.
- [26]López-Lara IM, Sohlenkamp C, Geiger O: Membrane lipids in plant-associated bacteria: their biosyntheses and possible functions. Mol Plant Microbe Interact 2003, 16:567-579.
- [27]Vences-Guzmán MA, Geiger O, Sohlenkamp C: Sinorhizobium meliloti mutants deficient in phosphatidylserine decarboxylase accumulate phosphatidylserine and are strongly affected during symbiosis with alfalfa. J Bacteriol 2008, 190:6846-6856.
- [28]BDGP: Neural Network Promoter Prediction. [http://www.fruitfly.org/seq_tools/promoter.html webcite]
- [29]Barton LL, Johnson GV, Schitoskey K, Wertz M: Siderophore-mediated iron metabolism in growth and nitrogen fixation by alfalfa nodulated with Rhizobium meliloti. J Plant Nutr 1996, 19:1201-1210.
- [30]O Cuív P, Clarke P, Lynch D, O’connell M: Identification of rhtX and fptX, novel genes encoding proteins that show homology and function in the utilization of the siderophores rhizobactin 1021 by Sinorhizobium meliloti and pyochelin by Pseudomonas aeruginosa, respectively. J Bacteriol 2004, 186:2996-3005.
- [31]Lynch D, O’Brien J, Welch T, Clarke P, Cuív PO, Crosa JH, O’Connell M: Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti. J Bacteriol 2001, 183:2576-2585.
- [32]Viguier C, O Cuív P, Clarke P, O’connell M: RirA is the iron response regulator of the rhizobactin 1021 biosynthesis and transport genes in Sinorhizobium meliloti 2011. FEMS Microbiol Lett 2005, 246:235-242.
- [33]Chao T-C, Buhrmester J, Hansmeier N, Puhler A, Weidner S: Role of the regulatory gene rirA in the transcriptional response of Sinorhizobium meliloti to iron limitation. Appl Environ Microbiol 2005, 71:5969.
- [34]Beck S, Marlow VL, Woodall K, Doerrler WT, James EK, Ferguson GP: The Sinorhizobium meliloti MsbA2 protein is essential for the legume symbiosis. Microbiology (Reading, Engl) 2008, 154:1258-1270.
- [35]Griffitts JS, Long SR: A symbiotic mutant of Sinorhizobium meliloti reveals a novel genetic pathway involving succinoglycan biosynthetic functions. Mol Microbiol 2008, 67:1292-1306.
- [36]Jacob AI, Adham SAI, Capstick DS, Clark SRD, Spence T, Charles TC: Mutational analysis of the Sinorhizobium meliloti short-chain dehydrogenase/reductase family reveals substantial contribution to symbiosis and catabolic diversity. Mol Plant Microbe Interact 2008, 21:979-987.
- [37]Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AHF, Poole PS, Finan TM: Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci USA 2006, 103:17933-17938.
- [38]Chen H, Teplitski M, Robinson JB, Rolfe BG, Bauer WD: Proteomic analysis of wild-type Sinorhizobium meliloti responses to N-acyl homoserine lactone quorum-sensing signals and the transition to stationary phase. J Bacteriol 2003, 185:5029-5036.
- [39]Clover RH, Kieber J, Signer ER: Lipopolysaccharide mutants of Rhizobium meliloti are not defective in symbiosis. J Bacteriol 1989, 171:3961-3967.
- [40]Djordjevic SP, Ridge RW, Chen HC, Redmond JW, Batley M, Rolfe BG: Induction of pathogenic-like responses in the legume Macroptilium atropurpureum by a transposon-induced mutant of the fast-growing, broad-host-range Rhizobium strain NGR234. J Bacteriol 1988, 170:1848-1857.
- [41]Newman JD, Diebold RJ, Schultz BW, Noel KD: Infection of soybean and pea nodules by Rhizobium spp. purine auxotrophs in the presence of 5-aminoimidazole-4-carboxamide riboside. J Bacteriol 1994, 176:3286-3294.
- [42]Noel KD, Diebold RJ, Cava JR, Brink BA: Rhizobial purine and pyrimidine auxotrophs: Nutrient supplementation, genetic analysis, and the symbiotic requirement for the novo purine biosynthesis. Arch Microbiol 1988, 149:499-506.
- [43]Danielli A, Roncarati D, Delany I, Chiarini V, Rappuoli R, Scarlato V: In vivo dissection of the Helicobacter pylori Fur regulatory circuit by genome-wide location analysis. J Bacteriol 2006, 188:4654-4662.
- [44]Foreman DL, Vanderlinde EM, Bay DC, Yost CK: Characterization of a gene family of outer membrane proteins (ropB) in Rhizobium leguminosarum bv. viciae VF39SM and the role of the sensor kinase ChvG in their regulation. J Bacteriol 2010, 192:975-983.
- [45]Dozot M, Poncet S, Nicolas C, Copin R, Bouraoui H, Mazé A, Deutscher J, De Bolle X, Letesson J-J: Functional characterization of the incomplete phosphotransferase system (PTS) of the intracellular pathogen Brucella melitensis. PLoS One 2010, 5:e12679.
- [46]Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM: Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 1982, 149:114-122.
- [47]Galibert F, Finan T, Long S, Pühler A, Abola P, Ampe F, Barloy-Hubler F, BARNETT M, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis R, Dreano S, Federspiel N, FISHER R, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernández-Lucas I, Hong A, et al.: The composite genome of the legume symbiont Sinorhizobium meliloti. Science 2001, 293:668-672.
- [48]Hanahan D: Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983, 166:557-580.
- [49]Studier FW, Moffatt BA: Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 1986, 189:113-130.
- [50]Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 1985, 33:103-119.
- [51]Kaniga K, Delor I, Cornelis GR: A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene 1991, 109:137-141.
- [52]Brody JR, Kern SE: History and principles of conductive media for standard DNA electrophoresis. Anal Biochem 2004, 333:1-13.
- [53]Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: Short protocols in molecular biology. 2nd edition. New York: Greene Publishing Associates and John Wiley and Sons; 1992.
- [54]Sambrook J, Russell DW: Molecular cloning: a laboratory manual, Vol 1-3. 3rd edition. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2001.
- [55]Sinorhizobium meliloti 1021. [http://iant.toulouse.inra.fr/bacteria/annotation/cgi/rhime.cgi webcite]
- [56]Finan TM, Hartweig E, Lemieux K, Bergman K, Walker GC, Signer ER: General transduction in Rhizobium meliloti. J Bacteriol 1984, 159:120-124.
PDF