期刊论文详细信息
BMC Evolutionary Biology
Mitogenomics of the Speartooth Shark challenges ten years of control region sequencing
Peter M Grewe4  Gavin JP Naylor2  Xiao Chen3  Richard D Pillans1  Peter M Kyne5  Pierre Feutry5 
[1] CSIRO Oceans and Atmosphere Flagship, 41 Boggo Road, Dutton Park 4102, Queensland, Australia;Department of Biology, College of Charleston, Charleston 29412, SC, USA;Guangxi Key Lab for Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai 536000, PR China;CSIRO Oceans and Atmosphere Flagship, Castray Esplanade, Hobart 7000, Tasmania, Australia;Charles Darwin University, Research Institute for the Environment and Livelihoods, Ellengowan Drive, Darwin 0909, Northern Territory, Australia
关键词: Low genetic diversity;    D-loop;    Dispersal;    IUCN Red List;    Philopatry;    Elasmobranchs;    Population genetics;   
Others  :  1117844
DOI  :  10.1186/s12862-014-0232-x
 received in 2014-08-13, accepted in 2014-11-04,  发布年份 2014
PDF
【 摘 要 】

Background

Mitochondrial DNA markers have long been used to identify population boundaries and are now a standard tool in conservation biology. In elasmobranchs, evolutionary rates of mitochondrial genes are low and variation between distinct populations can be hard to detect with commonly used control region sequencing or other single gene approaches. In this study we sequenced the whole mitogenome of 93 Critically Endangered Speartooth Shark Glyphis glyphis from the last three river drainages they inhabit in northern Australia.

Results

Genetic diversity was extremely low (π =0.00019) but sufficient to demonstrate the existence of barriers to gene flow among river drainages (AMOVA ΦST =0.28283, P <0.00001). Surprisingly, the comparison with single gene sub-datasets revealed that ND5 and 12S were the only ones carrying enough information to detect similar levels of genetic structure. The control region exhibited only one mutation, which was not sufficient to detect any structure among river drainages.

Conclusions

This study strongly supports the use of single river drainages as discrete management units for the conservation of G. glyphis. Furthermore when genetic diversity is low, as is often the case in elasmobranchs, our results demonstrate a clear advantage of using the whole mitogenome to inform population structure compared to single gene approaches. More specifically, this study questions the extensive use of the control region as the preferential marker for elasmobranch population genetic studies and whole mitogenome sequencing will probably uncover a large amount of cryptic population structure in future studies.

【 授权许可】

   
2014 Feutry et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150206010746822.pdf 1467KB PDF download
Figure 2. 21KB Image download
Figure 1. 57KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Moritz C: Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 1994, 9(10):373-375.
  • [2]Taylor BL, Dizon AE: First policy then science: why a management unit based solely on genetic criteria cannot work. Mol Ecol 1999, 8:S11-S16.
  • [3]King TL, Kalinowski ST, Schill WB, Spidle AP, Lubinski BA: Population structure of Atlantic salmon (Salmo salar L.): a range‐wide perspective from microsatellite DNA variation. Mol Ecol 2001, 10(4):807-821.
  • [4]Palsbøll PJ, Berube M, Allendorf FW: Identification of management units using population genetic data. Trends Ecol Evol 2007, 22(1):11-16.
  • [5]Waples RS, Gaggiotti O: What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 2006, 15(6):1419-1439.
  • [6]Avise JC, Ellis D: Mitochondrial DNA and the evolutionary genetics of higher animals [and discussion]. Philos Trans R Soc B 1986, 312(1154):325-342.
  • [7]Rubinoff D: Utility of mitochondrial DNA barcodes in species conservation. Conserv Biol 2006, 20(4):1026-1033.
  • [8]Moritz C: Applications of mitochondrial DNA analysis in conservation: a critical review. Mol Ecol 1994, 3(4):401-411.
  • [9]Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC: Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 1987, 18(1):489-522.
  • [10]Portnoy DS: Molecular insights into elasmobranch reproductive behavior for conservation and management. In Sharks and Their Relatives II: Biodiversity, Adaptive Physiology, and Conservation. Edited by Carrier JC, Musick JA, Heithaus MR. CRC Press, Boca Raton, FL; 2010:435-457.
  • [11]Feldheim KA, Gruber SH, DiBattista JD, Babcock EA, Kessel ST, Hendry AP, Pikitch EK, Ashley MV, Chapman DD: Two decades of genetic profiling yields first evidence of natal philopatry and long‐term fidelity to parturition sites in sharks. Mol Ecol 2014, 23(1):110-117.
  • [12]Dudgeon CL, Blower DC, Broderick D, Giles JL, Holmes BJ, Kashiwagi T, Krück NC, Morgan JAT, Tillett BJ, Ovenden JR: A review of the application of molecular genetics for fisheries management and conservation of sharks and rays. J Fish Biol 2012, 80(5):1789-1843.
  • [13]Aquadro CF, Greenberg BD: Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics 1983, 103(2):287-312.
  • [14]Lee W-J, Conroy J, Howell WH, Kocher TD: Structure and evolution of teleost mitochondrial control regions. J Mol Evol 1995, 41(1):54-66.
  • [15]Wenink PW, Baker AJ, Tilanus M: Mitochondrial control-region sequences in two shorebird species, the Turnstone and the Dunlin, and their utility in population genetic studies. Mol Biol Evol 1994, 11(1):22-31.
  • [16]Martin AP, Naylor GJP, Palumbi SR: Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 1992, 357(6374):153-155.
  • [17]Wynen L, Larson H, Thorburn D, Peverell S, Morgan D, Field I, Gibb K: Mitochondrial DNA supports the identification of two endangered river sharks (Glyphis glyphis and Glyphis garricki) across northern Australia. Mar Freshw Res 2009, 60(6):554-562.
  • [18]Stoner DS, Grady JM, Priede KA, Quattro JM: Amplification primers for the mitochondrial control region and sixth intron of the nuclear-encoded lactate dehydrogenase A gene in elasmobranch fishes. Conserv Genet 2003, 4(6):805-808.
  • [19]McLachlan A: Comparative phylogeography of the catshark, Haploblepharus pictus and its nematode parasite, Proleptus obtusus. University of Stellenbosch, Stellenbosch; 2011.
  • [20]Frederico RG, Farias IP, Araújo MLG, Charvet-Almeida P, Alves-Gomes JA: Phylogeography and conservation genetics of the Amazonian freshwater stingray Paratrygon aiereba Müller & Henle, 1841 (Chondrichthyes: Potamotrygonidae). Neotrop Ichthyol 2012, 10:71-80.
  • [21]Naylor GJP, Caira JN, Jensen K, Rosana KAM, White WT, Last PR: A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. In Bulletin of the American Museum of Natural History. Department of Library Services, American Museum of Natural History, New York; 2012:1-262.
  • [22]Castillo-Páez A, Sosa-Nishizaki O, Sandoval-Castillo J, Galván-Magaña F, Rocha-Olivares A: Strong population structure and shallow mitochondrial phylogeny in the banded guitarfish, Zapteryx exasperata (Jordan y Gilbert, 1880), from the northern Mexican Pacific. J Hered 2014, 105(1):91-100.
  • [23]Tillett B, Meekan M, Field I, Thorburn D, Ovenden J: Evidence for reproductive philopatry in the bull shark Carcharhinus leucas. J Fish Biol 2012, 80(6):2140-2158.
  • [24]Dudgeon CL, Broderick D, Ovenden JR: IUCN classification zones concord with, but underestimate, the population genetic structure of the zebra shark Stegostoma fasciatum in the Indo‐West Pacific. Mol Ecol 2009, 18(2):248-261.
  • [25]Arnason U, Adegoke JA, Gullberg A, Harley EH, Janke A, Kullberg M: Mitogenomic relationships of placental mammals and molecular estimates of their divergences. Gene 2008, 421(1):37-51.
  • [26]Shamblin BM, Bjorndal KA, Bolten AB, Hillis-Starr ZM, Lundgren IAN, Naro-Maciel E, Nairn CJ: Mitogenomic sequences better resolve stock structure of southern Greater Caribbean green turtle rookeries. Mol Ecol 2012, 21(10):2330-2340.
  • [27]Knaus BJ, Cronn R, Liston A, Pilgrim K, Schwartz MK: Mitochondrial genome sequences illuminate maternal lineages of conservation concern in a rare carnivore. BMC Ecol 2011, 11:10. BioMed Central Full Text
  • [28]Morin PA, Archer FI, Foote AD, Vilstrup J, Allen EE, Wade P, Durban J, Parsons K, Pitman R, Li L, Bouffard P, Abel Nielsen SC, Rasmussen M, Willerslev E, Gilbert MT, Harkins T: Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species. Genome Res 2010, 20:908-916.
  • [29]Foote AD, Morin PA, Durban JW, Pitman RL, Wade P, Willerslev E, Gilbert MTP, da Fonseca RR: Positive selection on the killer whale mitogenome. Biol Lett 2011, 7(1):116-118.
  • [30]Pillans RD, Stevens JD, Kyne PM, Salini J: Observations on the distribution, biology, short-term movements and habitat requirements of river sharks Glyphis spp. in northern Australia. Endanger Species Res 2009, 10:321-332.
  • [31]Chen X, Liu M, Grewe PM, Kyne PM, Feutry P: Complete mitochondrial genome of the critically endangered Speartooth Shark Glyphis glyphis (Carcharhiniformes: Carcharhinidae). Mitochondrial DNA 2014, 25(6):431-432.
  • [32]Quail MA, Smith M, Jackson D, Leonard S, Skelly T, Swerdlow HP, Gu Y, Ellis P: SASI-Seq: sample assurance Spike-Ins, and highly differentiating 384 barcoding for Illumina sequencing. BMC Genomics 2014, 15(1):110. BioMed Central Full Text
  • [33]Timmermans MJTN, Dodsworth S, Culverwell CL, Bocak L, Ahrens D, Littlewood DTJ, Pons J, Vogler AP: Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Res 2010, 38(21):e197-e197.
  • [34]Winkelmann I, Campos PF, Strugnell J, Cherel Y, Smith PJ, Kubodera T, Allcock L, Kampmann M-L, Schroeder H, Guerra A: Mitochondrial genome diversity and population structure of the giant squid Architeuthis: genetics sheds new light on one of the most enigmatic marine species. Proc R Soc B 2013, 280(1759):20130273.
  • [35]Hoelzel AR, Shivji MS, Magnussen J, Francis MP: Low worldwide genetic diversity in the basking shark (Cetorhinus maximus). Biol Lett 2006, 2(4):639-642.
  • [36]Karl SA, Castro AL, Garla RC: Population genetics of the nurse shark (Ginglymostoma cirratum) in the western Atlantic. Mar Biol 2012, 159(3):489-498.
  • [37]Ahonen H, Harcourt R, Stow A: Nuclear and mitochondrial DNA reveals isolation of imperilled grey nurse shark populations (Carcharias taurus). Mol Ecol 2009, 18(21):4409-4421.
  • [38]Charlesworth B: Effective population size and patterns of molecular evolution and variation. Nat Rev Genet 2009, 10(3):195-205.
  • [39]Frankham R: Relationship of genetic variation to population size in wildlife. Conserv Biol 1996, 10(6):1500-1508.
  • [40][http://www.iucnredlist.org/details/39379/0] webcite Compagno LJV, Pogonoski J, Pollard D: Glyphis glyphis. In: IUCN 2013 The IUCN Red List of Threatened Species Version 20132. ; 2009.
  • [41]Barrett SCH, Kohn JR, Falk DA, Holsinger KE: Genetic and evolutionary consequences of small population size in plants: implications for conservation. In Genetics and Conservation of Rare Plants. Edited by Falk DA, Holsinger KE. Oxford University Press, New York, USA; 1991:3-30.
  • [42]Sandoval-Castillo J, Rocha-Olivares A, Villavicencio-Garayzar C, Balart E: Cryptic isolation of Gulf of California shovelnose guitarfish evidenced by mitochondrial DNA. Mar Biol 2004, 145(5):983-988.
  • [43]Griffiths AM, Sims DW, Cotterell SP, El Nagar A, Ellis JR, Lynghammar A, McHugh M, Neat FC, Pade NG, Queiroz N: Molecular markers reveal spatially segregated cryptic species in a critically endangered fish, the common skate (Dipturus batis). Proc R Soc Lond B Biol Sci 2010, 277(1687):1497-1503.
  • [44]Castro A, Stewart B, Wilson S, Hueter R, Meekan M, Motta P, Bowen B, Karl S: Population genetic structure of Earth's largest fish, the whale shark (Rhincodon typus). Mol Ecol 2007, 16(24):5183-5192.
  • [45]Benavides MT, Feldheim KA, Duffy CA, Wintner S, Braccini JM, Boomer J, Huveneers C, Rogers P, Mangel JC, Alfaro-Shigueto J: Phylogeography of the copper shark (Carcharhinus brachyurus) in the southern hemisphere: implications for the conservation of a coastal apex predator. Mar Freshw Res 2011, 62(7):861-869.
  • [46]Duncan KM, Martin AP, Bowen BW, De Couet HG: Global phylogeography of the scalloped hammerhead shark (Sphyrna lewini). Mol Ecol 2006, 15(8):2239-2251.
  • [47]Douady CJ, Dosay M, Shivji MS, Stanhope MJ: Molecular phylogenetic evidence refuting the hypothesis of Batoidea (rays and skates) as derived sharks. Mol Phylogenet Evol 2003, 26(2):215-221.
  • [48]Greig TW, Moore MK, Woodley CM, Quattro JM: Mitochondrial gene sequences useful for species identification of western North Atlantic Ocean sharks. Fish Bull 2005, 103(3):516-523.
  • [49]Kashiwagi T, Marshall AD, Bennett MB, Ovenden JR: The genetic signature of recent speciation in manta rays (Manta alfredi and M. birostris). Mol Phylogenet Evol 2012, 64(1):212-218.
  • [50]Feutry P, Grewe PM, Kyne PM, Chen X: Complete mitogenomic sequence of the Critically Endangered Northern River Shark Glyphis garricki (Carcharhiniformes: Carcharhinidae).Mitochondrial DNA In Press.
  • [51]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [52]Bandelt HJ, Forster P, Röhl A: Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999, 16(1):37-48.
  • [53]Excoffier L, Lischer HEL: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010, 10(3):564-567.
  • [54]Nei M: Molecular Evolutionary Genetics. Columbia University Press, New York; 1987.
  • [55]Watterson GA: On the number of segregating sites in genetical models without recombination. Theor Popul Biol 1975, 7(2):256-276.
  • [56]Tajima F: Evolutionary relationship of DNA sequences in finite populations. Genetics 1983, 105(2):437-460.
  • [57]Fu Y-X: Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147(2):915-925.
  • [58]Tamura K, Nei M: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993, 10(3):512-526.
  文献评价指标  
  下载次数:43次 浏览次数:23次