期刊论文详细信息
BMC Systems Biology
Network based elucidation of drug response: from modulators to targets
Diego di Bernardo2  Julio Saez-Rodriguez3  Francesco Iorio1 
[1] Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK;Deptartment of Electrical Engineering and Information Technology, University of Naples “Federico II”, Naples, Italy;European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
关键词: Drug repositioning;    Drug mode of action;    Network pharmacology;   
Others  :  1141704
DOI  :  10.1186/1752-0509-7-139
 received in 2012-11-23, accepted in 2013-07-19,  发布年份 2013
PDF
【 摘 要 】

Network-based drug discovery aims at harnessing the power of networks to investigate the mechanism of action of existing drugs, or new molecules, in order to identify innovative therapeutic treatments. In this review, we describe some of the most recent advances in the field of network pharmacology, starting with approaches relying on computational models of transcriptional networks, then moving to protein and signaling network models and concluding with “drug networks”. These networks are derived from different sources of experimental data, or literature-based analysis, and provide a complementary view of drug mode of action. Molecular and drug networks are powerful integrated computational and experimental approaches that will likely speed up and improve the drug discovery process, once fully integrated into the academic and industrial drug discovery pipeline.

【 授权许可】

   
2013 Iorio et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327113530961.pdf 340KB PDF download
Figure 1. 83KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Belcastro V, Siciliano V, Gregoretti F, Mithbaokar P, Dharmalingam G, Berlingieri S, Iorio F, Oliva G, Polishchuck R, Brunetti-Pierri N, di Bernardo D: Transcriptional gene network inference from a massive dataset elucidates transcriptome organization and gene function. Nucleic Acids Res 2011, 39(20):8677-8688.
  • [2]Vidal M, Cusick M, Barabsi AL: Interactome networks and human disease. Cell 2011, 23(144):968-998.
  • [3]Newman M: The structure and function of complex networks. SIAM Rev 2003, 45(45):167-256.
  • [4]Barabsi AL, Oltvai ZN: Network biology: understanding the cell’s functional organization. Nat Rev Genet 2004, 5(5):101-113.
  • [5]Schadt EE: Molecular networks as sensors and drivers of common human diseases. Nature 2009, 461(7261):218-223.
  • [6]Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D: How to infer gene networks from expression profiles. Mol Syst Biol 2007, 3:1-10.
  • [7]Gardner TS, di Bernardo D, Lorenz D, Collins JJ: Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301(5629):102-105.
  • [8]di Bernardo D, Thompson MJ, Gardner TS, Chobot SE, Eastwood EL, Wojtovich AP, Elliott SJ, Schaus SE, Collins JJ: Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat Biotechnol 2005, 23(3):377-383.
  • [9]Xing H, Gardner TS: The mode-of-action by network identification (MNI) algorithm: a network biology approach for molecular target identification. Nat Protocols 2006, 1(6):2551-2554.
  • [10]Ergün A, Lawrence CA, Kohanski MA, Brennan TA, Collins JJ: A network biology approach to prostate cancer. Mol Syst Biol 2007, 3:1-6.
  • [11]Mani KM, Lefebvre C, Wang K, Lim WK, Basso K, Dalla-Favera R, Califano A: A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol Syst Biol 2008, 4:1-9.
  • [12]Bansal M, Della Gatta G, di Bernardo D: Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 2006, 22(7):815-822.
  • [13]Della Gatta G, Bansal M, Ambesi-Impiombato A, Antonini D, Missero C, di Bernardo D: Direct targets of the Trp63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. Genome Res 2008, 18:939-948.
  • [14]Niola F, Xudong Z, Singh D, Castano A, Sullivan R, Lauria M, Nam HS, Zhuang Y, Benezra R, di Bernardo D, Iavarone A, Lasorella A: Id proteins synchronize stemness and anchorage to the niche of neural stem cells. Nature Cell Biol 2012, 14(5):477-487.
  • [15]Beal MJ, Falciani F, Ghahramani Z, Rangel C, Wild DL: A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Comput Appl Biosci: CABIOS 2005, 21(3):349-356.
  • [16]Husmeier D: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Comput Appl Biosci: CABIOS 2003, 19(17):2271-2282.
  • [17]Barenco M, Tomescu D, Brewer D, Callard R, Stark J, Hubank M: Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biol 2006, 7(3):R25. BioMed Central Full Text
  • [18]Honkela A, Girardot C, Gustafson EH, Liu YH, Furlong EEM, Lawrence ND, Rattray M: Model-based method for transcription factor target identification with limited data. Proc Natl Acad Sci 2010, 107(17):7793-7798.
  • [19]Douglas SM, Montelione GT, Gerstein M: PubNet: a flexible system for visualizing literature derived networks. Genome Biol 2005, 6(9):R80. BioMed Central Full Text
  • [20]Carro M, Lim W, Alvarez M, Bollo R, Zhao X, Snyder E, Sulman E, Anne S, Doetsch F, Colman H, Lasorella A, Aldape K, Califano A, Iavarone A: The transcriptional network for mesenchymal transformation of brain tumours. Nature 2010, 463(7279):318-325.
  • [21]Kotelnikova E, Shkrob MA, Pyatnitskiy MA, Ferlini A, Daraselia N: Novel approach to meta-analysis of microarray datasets reveals muscle remodeling-related drug targets and biomarkers in duchenne muscular dystrophy. PLoS Comp Biol 2012, 8(2):e1002365.
  • [22]Yang R, Niepel M, Mitchison TK, Sorger PK: Dissecting variability in responses to cancer chemotherapy through systems pharmacology. Clinic Pharmacol Ther 2010, 88:34-38.
  • [23]Terfve C, Saez-Rodriguez J: Modeling signaling networks using high-throughput phospho-proteomics. Adv Exp Med Biol 2012, 736:19-57.
  • [24]Fitzgerald JB, Schoeberl B, Nielsen UB, Sorger PK: Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol 2006, 2(9):458-466.
  • [25]Lehár J, Zimmermann GR, Krueger AS, Molnar RA, Ledell JT, Heilbut AM, Short GF, Giusti LC, Nolan GP, Magid OA, Lee MS, Borisy AA, Stockwell BR, Keith CT: Chemical combination effects predict connectivity in biological systems. Mol Syst Biol 2007, 3:80.
  • [26]Hendriks BS: Functional pathway pharmacology: chemical tools, pathway knowledge and mechanistic model-based interpretation of experimental data. Curr Opin Chem Biol 2010, 14(4):489-497.
  • [27]Schoeberl B, Pace EA, Fitzgerald JB, Harms BD, Xu L, Nie L, Linggi B, Kalra A, Paragas V, Bukhalid R, Grantcharova V, Kohli N, West KA, Leszczyniecka M, Feldhaus MJ, Kudla AJ, Nielsen UB: Therapeutically targeting ErbB3 a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci Signal 2009, 2(77):ra31.
  • [28]Iadevaia S, Lu Y, Morales FC, Mills GB, Ram PT: Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis. Cancer Res 2010, 70(17):6704-6714.
  • [29]Hendriks BS, Seidl KM, Chabot JR: Two additive mechanisms impair the differentiation of ‘substrate-selective’ p38 inhibitors from classical p38 inhibitors in vitro. BMC Syst Biol 2010, 4:23. BioMed Central Full Text
  • [30]Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA: Logic-based models for the analysis of cell signaling networks. Biochem 2010, 49(15):3216-3224.
  • [31]Watterson S, Marshall S, Ghazal P: Logic models of pathway biology. Drug Discov Today 2008, 13(9-10):447-456.
  • [32]Wang RS, Saadatpour A, Albert R: Boolean modeling in systems biology an overview of methodology and applications. Phys Biol 2012, 9(5):055001.
  • [33]Saez-Rodriguez J, Alexopoulos LG, Zhang M, Morris MK, Lauffenburger DA, Sorger PK: Comparing signaling networks between normal and transformed Hepatocytes using discrete logical models. Cancer Res 2011.
  • [34]Mitsos A, Melas I, Siminelakis P, Chairakaki A, Saez-Rodriguez J, Alexopoulos LG: Identifying drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data. PLoS Comp Biol 2009, 5(12):e1000591.
  • [35]Saadatpour A, Wang RS, Liao A, Liu X, Loughran TP, Albert I, Albert R: Dynamical and structural analysis of a T cell survival network identifies novel candidate therapeutic targets for large granular lymphocyte Leukemia. PLoS Comput Biol 2011, 7(11):e1002267.
  • [36]Sahin O, Fröhlich H, Löbke C, Korf U, Burmester S, Majety M, Mattern J, Schupp I, Chaouiya C, Thieffry D, Poustka A, Wiemann S, Beissbarth T, Arlt D: Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Syst Biol 2009, 3:1. BioMed Central Full Text
  • [37]Iskar M, Campillos M, Kuhn M, Jensen L, van Noort V, Bork P: Drug-induced regulation of target expression. PLoS Comput Biol 2010, 6(9):1929-1935.
  • [38]Iorio F, Rittman T, Ge H, Menden M, Saez-Rodriguez J: Transcriptional data: a new gateway to drug repositioning? Drug Discov Today 2013, 18(7-8):350-357.
  • [39]Iorio F, Isacchi A, di Bernardo D: Identification of small molecules enhancing autophagic function from drug network analysis. Autophagy 2010, 6(8):1204-1205.
  • [40]Dudley JT, Deshpande T, Butte AJ: Exploiting drug-disease relationships for computational drug repositioning. Brief Bioinformatics 2011, 12(4):303-311.
  • [41]Dudley JT, Sirota M, Shenoy M, Pai RK, Roedder S, Chiang AP, Morgan AA, Sarwal MM, Pasricha PJ, Butte AJ: Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci Transl Med 2011, 3(96):96ra76-96ra76.
  • [42]Sirota M, Dudley JT, Kim J, Chiang AP, Morgan AA, Sweet-Cordero A, Sage J, Butte AJ: Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci Transl Med 2011, 3(96):96ra77-96ra77.
  • [43]Kunkel SD, Suneja M, Ebert SM, Bongers KS, Fox DK, Malmberg SE, Alipour F, Shields RK, Adams CM: mRNA Expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metabolism 2011, 13(6):627-638.
  • [44]Shigemizu D, Hu Z, Hung JH, Huang CL, Wang Y, DeLisi C: Using functional signatures to identify repositioned drugs for breast, myelogenous Leukemia and prostate cancer. PLoS Comput Biol 2012, 8(2):e1002347.
  • [45]Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, Murino L, Tagliaferri R, Brunetti-Pierri N, Isacchi A: Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci 2010, 107(33):14621.
  • [46]Ma C, Chen H, Huang Y, Chen Y: Constructing a compound mode-of-action network for personalized drug effectiveness prediction. Proc First ACM Intl Conf Bioinformatics Comput Biol 2010, 520-528.
  • [47]Lamb J, Crawford E, Peck D, Modell J, Blat I, Wrobel M, Lerner J, Brunet J, Subramanian A, Ross K: The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science (New York, NY) 1929., 313(5795)
  • [48]Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M, Paulovich A, Pomeroy S, Golub T, Lander E: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005, 102(43):15545.
  • [49]Lamb J: The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer 2007, 7:54-60.
  • [50]Hu G, Agarwal P: Human disease-drug network based on genomic expression profiles. PLoS ONE 2009, 4(8):e6536.
  • [51]Barrett T: NCBI GEO: mining millions of expression profiles–database and tools. Nucleic Acids Res 2004, 33(Database issue):D562-D566.
  • [52]Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P: Drug target identification using side-effect similarity. Science 2008, 321(5886):263-266.
  • [53]Bodenreider O: The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res 2004, 32(90001):267D-270D.
  • [54]Li H, Zhou H, Wang D, Qiu J, Zhou Y, Li X, Rosenfeld MG, Ding S, Fu XD: Versatile pathway-centric approach based on high-throughput sequencing to anticancer drug discovery. Proc Natl Acad Sci 2012, 109(12):4609-4614.
  • [55]Iyengar R, Zhao S, Chung SW, Mager DE, Gallo JM: Merging systems biology with pharmacodynamics. Sci Transl Med 2012, 4(126):126ps7.
  文献评价指标  
  下载次数:0次 浏览次数:5次