期刊论文详细信息
BMC Evolutionary Biology
Evolution and genomic organization of muscle microRNAs in fish genomes
Danillo Pinhal2  Marcos Correa Dias1  Pedro Gabriel Nachtigall2 
[1] Institute of Health Sciences, UFMT -Federal University of Mato Grosso, Mato Grosso 78550-000, Brazil;Department of Genetics, UNESP - Sao Paulo State University, Institute of Biosciences, Botucatu 18618-970, SP, Brazil
关键词: Paralogs;    Evolution;    Striated muscle;    Comparative genomics;    miRNA;   
Others  :  1117937
DOI  :  10.1186/s12862-014-0196-x
 received in 2014-05-08, accepted in 2014-08-22,  发布年份 2014
PDF
【 摘 要 】

Background

MicroRNAs (miRNAs) are small non-coding RNA molecules with an important role upon post-transcriptional regulation. These molecules have been shown essential for several cellular processes in vertebrates, including muscle biology. Many miRNAs were described as exclusively or highly expressed in skeletal and/or cardiac muscle. However, knowledge on the genomic organization and evolution of muscle miRNAs has been unveiled in a reduced number of vertebrates and mostly only reflects their organization in mammals, whereas fish genomes remain largely uncharted. The main goal of this study was to elucidate particular features in the genomic organization and the putative evolutionary history of muscle miRNAs through a genome-wide comparative analysis of cartilaginous and bony fish genomes.

Results

As major outcomes we show that (1) miR-208 was unexpectedly absent in cartilaginous and ray-finned fish genomes whereas it still exist in other vertebrate groups; (2) miR-499 was intergenic in medaka and stickleback conversely to other vertebrates where this miRNA is intronic; (3) the zebrafish genome is the unique harboring two extra paralogous copies of miR-499 and their host gene (Myh7b); (4) a rare deletion event of the intergenic and bicistronic cluster miR-1-1/133a-2 took place only into Tetraodontiformes genomes (pufferfish and spotted green puffer); (5) the zebrafish genome experienced a duplication event of miR-206/-133b; and (6) miR-214 was specifically duplicated in species belonging to superorder Acanthopterygii.

Conclusions

Despite of the aforementioned singularities in fish genomes, large syntenic blocks containing muscle-enriched miRNAs were found to persist, denoting colligated functionality between miRNAs and neighboring genes. Based on the genomic data here obtained, we envisioned a feasible scenario for explaining muscle miRNAs evolution in vertebrates.

【 授权许可】

   
2014 Nachtigall et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150206013217530.pdf 865KB PDF download
Figure 6. 88KB Image download
Figure 5. 80KB Image download
Figure 4. 40KB Image download
Figure 3. 10KB Image download
Figure 2. 31KB Image download
Figure 1. 95KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Bartel D: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
  • [2]Nozawa M, Miura S, Nei M: Origins and evolution of microRNA genes in Drosophila species. Genome Biol Evol 2010, 2:180-189.
  • [3]Heimberg AM, Sempere LF, Moy VN, Donoghue PCJ, Peterson KJ: MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci U S A 2008, 105(8):2946-2950.
  • [4]Peterson KJ, Dietrich MR, McPeek MA: MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. Bioessays 2009, 31:736-747.
  • [5]Berezikov E: Evolution of microRNA diversity and regulation in animals. Nature Reviews 2011, 12:846-860.
  • [6]Turner M, Yu O, Subramanian S: Genome organization and characteristics of soybean microRNAs. BMC Genomics 2012, 13:169. BioMed Central Full Text
  • [7]Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T: Identification of tissue-specific microRNAs from mouse. Curr Biol 2002, 12:735-739.
  • [8]Ason B, Darnell DK, Wittbrodt B, Berezikov E, Kloosterman WP, Wittbrodt J, Antin PB, Plasterk RHA: Differences in vertebrate microRNA expression. Proc Natl Acad Sci U S A 2006, 103(39):14385-14389.
  • [9]Gagan J, Dey BK, Dutta A: MicroRNAs regulate and provide robustness to the myogenic transcriptional network. Cur Op in Phar 2012, 12:1-6.
  • [10]van Rooij E, Liu N, Olson EM: MicroRNAs flex their muscles. Trends Genet 2008, 24(4):159-166.
  • [11]Ge Y, Chen J: MicroRNAs in skeletal myogenesis. Cell Cycle 2011, 10(3):441-448.
  • [12]Yin VP, Lepilina A, Smith A, Poss KD: Regulation of zebrafish heart regeneration by miR-133. Dev Biol 2012, 365:319-327.
  • [13]Olena AF, Patton JG: Genomic organization of microRNAs. J Cell Physiol 2010, 222:540-545.
  • [14]Romao JM, Jin W, He M, McAllister T, Guan Ie L: MicroRNAs in bovine adipogenesis: genomic context, expression and function. BMC Genomics 2014, 15:137. BioMed Central Full Text
  • [15]Thatcher EJ, Bond J, Paydar I, Patton JG: Genomic organization of zebrafish microRNAs. BMC Genomics 2008, 9:253. BioMed Central Full Text
  • [16]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
  • [17]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  • [18]Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL: The Vienna RNA Websuite. Nucleic Acids Res 2008, 36:W70-W74.
  • [19]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [20][http://tree.bio.ed.ac.uk/software/figtree/] webcite Rambaut A: FigTree..
  • [21]Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets. Cell 2005, 120:15-20.
  • [22]Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S: AmiGO Hub, Web Presence Working Group. AmiGO: online access to ontology and annotation data. Bioinformatics 2009, 25(2):288-289.
  • [23]Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T: A uniform system for microRNA annotation. RNA 2003, 9:277-279.
  • [24]Sempere LF, Cole CN, McPeek MA, Peterson KJ: The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J Exp Zool B 2006, 306:575-588.
  • [25]Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, Snyman H, Hannon GJ, Bork P, Arendt D: Ancient animal microRNAs and the evolution of tissue identity. Nature 2010, 463:1084-1088.
  • [26]Wang XG, Ono Y, Tan SC, Chai RJF, Parkin C, Ingham PW: Prdm1a and miR-499 act sequentially to restrict Sox6 activity to the fast-twitch muscle lineage in the zebrafish embryo. Development 2011, 138:4399-4404.
  • [27]Berezikov E, Thuemmler F, van Laake LW, Kondova I, Bontrop R, Cuppen E, Plasterk RHA: Diversity of microRNAs in human and chimpanzee brain. Nat Genet 2006, 38(12):1375-1377.
  • [28]Ninova M, Ronshaugen M, Griffiths-Jones S: Fast-evolving microRNAs are highly expressed in the early embryo of Drosophila virilis. RNA 2014, 20(3):360-372.
  • [29]Houbaviy HB, Dennis L, Jaenisch R, Sharp PA: Characterization of a highly variable eutherian microRNA gene. RNA 2005, 11(8):1245-1257.
  • [30]Arcila ML, Betizeau M, Cambronne XA, Guzman E, Doerflinger N, Bouhallier F, Zhou H, Wu B, Rani N, Bassett DS, Borello U, Huissoud C, Goodman RH, Dehay C, Kosik KS: Novel primate miRNAs coevolved with ancient target genes in germinal zone-specific expression patterns. Neuron 2014, 81(6):1255-1262.
  • [31]Lu J, Shen Y, Wu Q, Kumar S, He B, Shi S, Carthew RW, Wang SM, Wu CI: The birth and death of microRNA genes in Drosophila. Nat Genet 2008, 40(3):351-355.
  • [32]Chen K, Maaskola J, Siegal ML, Rajewsky N: Reexamining microRNA site accessibility in Drosophila: a population genomics study. PLoS One 2009, 4(5):e5681.
  • [33]Liu N, Olson EN: MicroRNA regulatory networks in cardiovascular development. Dev Cell 2010, 18:510-525.
  • [34]Bell ML, Buvoli M, Leinwand LA: Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping. Mol Cell Biol 2010, 30(8):1937.
  • [35]Flynt AS, Li N, Thatcher EJ, Solnica-Krezel L, Patton JG: Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nat Genet 2007, 39(2):259-263.
  • [36]Tani S, Kuraku S, Sakamoto H, Inoue K, Kusakabe R: Developmental expression and evolution of muscle‐specific microRNAs conserved in vertebrates. Evol Dev 2013, 15(4):293-304.
  • [37]Bhuiyan SS, Kinoshita S, Wongwarangkana C, Asaduzzaman M, Asakawa S, Watabe S: Evolution of the myosin heavy chain gene MYH14 and its intronic microRNA miR-499: muscle-specific miR-499 expression persists in the absence of the ancestral host gene. BMC Evol Biol 2013, 13:142. BioMed Central Full Text
  • [38]van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ Jr, Olson EN: A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 2009, 17(5):662-673.
  • [39]Latronico MV, Catalucci D, Condorelli G: Emerging role of microRNAs in cardiovascular biology. Circ Res 2007, 101(12):1225-1236.
  • [40]Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, et al.: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007, 129:1401-1414.
  • [41]Soares AR, Pereira PM, Santos B, Egas C, Gomes AC, Arrais J, Oliveira JL, Moura GR, Santos MAS: Parallel DNA pyrosequencing unveils new zebrafish microRNAs. BMC Genomics 2009, 10:195. BioMed Central Full Text
  • [42]Heimberg AM, Cowper-Sal-lari R, Semon M, Donoghue PC, Peterson KJ: MicroRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc Natl Acad Sci U S A 2010, 107:19379-19383.
  • [43]Luo GZ, Hafner M, Shi Z, Brown M, Feng GH, Tuschl T, Wang XJ, Li XC: Genome-wide annotation and analysis of zebra finch microRNA repertoire reveal sex-biased expression. BMC Genomics 2012, 13:727. BioMed Central Full Text
  • [44]Loh YHE, Yi SV, Streelman JT: Evolution of microRNAs and the diversification of species. Genome Biol Evol 2011, 3:55-65.
  • [45]Sperling EA, Peterson KJ: MicroRNAs and Metazoan Phylogeny: big Trees from Little Genes. In Animal Evolution: Genomes, Fossils, and Trees. Edited by Telford MJ, Littlewood DTJ. Maximilian J. Telford and D.T.J. Littlewood, (Oxford Univ Press, Oxford); 2009:157-210. Chapter 15
  • [46]Kusakabe R, Tani S, Nishitsuji K, Shindo M, Okamura K, Miyamoto Y, Nakai K, Suzuki Y, Kusakabe TG, Inoue K: Characterization of the compact bicistronic microRNA precursor, miR-1/miR-133, expressed specifically in Ciona muscle tissues. Gene Expr Patterns 2013, 13:43-50.
  文献评价指标  
  下载次数:15次 浏览次数:1次