期刊论文详细信息
BMC Genetics
Comparative cytogenetic analysis of some species of the Dendropsophus microcephalus group (Anura, Hylidae) in the light of phylogenetic inferences
Shirlei Maria Recco-Pimentel2  Gabriel Toselli Barbosa Tabosa Egito1  Ariovaldo Antonio Giaretta6  Gilda Vasconcellos Andrade5  Albertina Pimentel Lima3  Denise Cerqueira Rossa-Feres4  Luciana Bolsoni Lourenço2  Lilian Ricco Medeiros2 
[1] Departamento de Polícia Federal, Ministério da Justiça, 68908-901, Macapá, AP, Brazil;Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13086-863, Campinas, SP, Brazil;Coordenadoria de Pesquisas em Ecologia, Instituto Nacional de Pesquisas da Amazônia (INPA), 69011-970, Manaus, AM, Brazil;Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), 15054-000, São José do Rio Preto, São Paulo, Brazil;Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão (UFMA), Campus do Bacanga, 65080-040, São Luís, MA, Brazil;Laboratório de Anuros Neotropicais, Faculdade de Ciências Integradas do Pontal, Universidade Federal de Uberlândia, 38304-402, Ituiutaba, MG, Brazil
关键词: Anura;    Dendropsophus;    Phylogeny;    Chromosome;   
Others  :  1086893
DOI  :  10.1186/1471-2156-14-59
 received in 2013-01-08, accepted in 2013-06-20,  发布年份 2013
PDF
【 摘 要 】

Background

Dendropsophus is a monophyletic anuran genus with a diploid number of 30 chromosomes as an important synapomorphy. However, the internal phylogenetic relationships of this genus are poorly understood. Interestingly, an intriguing interspecific variation in the telocentric chromosome number has been useful in species identification. To address certain uncertainties related to one of the species groups of Dendropsophus, the D. microcephalus group, we carried out a cytogenetic analysis combined with phylogenetic inferences based on mitochondrial sequences, which aimed to aid in the analysis of chromosomal characters. Populations of Dendropsophus nanus, Dendropsophus walfordi, Dendropsophus sanborni, Dendropsophus jimi and Dendropsophus elianeae, ranging from the extreme south to the north of Brazil, were cytogenetically compared. A mitochondrial region of the ribosomal 12S gene from these populations, as well as from 30 other species of Dendropsophus, was used for the phylogenetic inferences. Phylogenetic relationships were inferred using maximum parsimony and Bayesian analyses.

Results

The species D. nanus and D. walfordi exhibited identical karyotypes (2n = 30; FN = 52), with four pairs of telocentric chromosomes and a NOR located on metacentric chromosome pair 13. In all of the phylogenetic hypotheses, the paraphyly of D. nanus and D. walfordi was inferred. D. sanborni from Botucatu-SP and Torres-RS showed the same karyotype as D. jimi, with 5 pairs of telocentric chromosomes (2n = 30; FN = 50) and a terminal NOR in the long arm of the telocentric chromosome pair 12. Despite their karyotypic similarity, these species were not found to compose a monophyletic group. Finally, the phylogenetic and cytogenetic analyses did not cluster the specimens of D. elianeae according to their geographical occurrence or recognized morphotypes.

Conclusions

We suggest that a taxonomic revision of the taxa D. nanus and D. walfordi is quite necessary. We also observe that the number of telocentric chromosomes is useful to distinguish among valid species in some cases, although it is unchanged in species that are not necessarily closely related phylogenetically. Therefore, inferences based on this chromosomal character must be made with caution; a proper evolutionary analysis of the karyotypic variation in Dendropsophus depends on further characterization of the telocentric chromosomes found in this group.

【 授权许可】

   
2013 Medeiros et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116020521991.pdf 1697KB PDF download
Figure 5. 47KB Image download
Figure 4. 129KB Image download
Figure 3. 46KB Image download
Figure 2. 46KB Image download
Figure 1. 126KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Faivovich J, Haddad CFB, Garcia PCA, Frost DR, Campbell JA, Wheeler WC: Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. Bull Am Museum Nat Hist 2005, 294:1-240.
  • [2]Frost DR: Amphibian Species of the World: an Online Reference. New York, USA: American Museum of Natural History; Version 5.5 (31 January, 2011). [Electronic Database accessible at http://research.amnh.org/vz/herpetology/amphibia/ webcite
  • [3]Beçak ML: Chromosomal analysis of eighteen species of Anura. Caryologia 1968, 21:191-208.
  • [4]Rabello MN: Chromosomal studies in Brazilian anurans. Caryologia 1970, 23:45-59.
  • [5]Foresti F: Aspectos cromossômicos da família Hylidae (Amphibia - Anura). ESALQ, Brazil: Master Dissertation. Universidade de São Paulo; 1972.
  • [6]Bogart JP: Evolution of anuran karyotypes. In Evolutionary Biology of Anurans. Edited by Vial JL. Columbia: Missouri: Univ. Missouri Press; 1973:337-349.
  • [7]Anderson K: Chromosome evolution in Holoarctic Hyla treefrogs. In Amphibian Cytogenetics and Evolution. Edited by Green DM, Sessions SK. San Diego: Academic; 1991:299-328.
  • [8]Skuk G, Langone JA: Los cromosomas de cuatro especies del Género Hyla (Anura: Hylidae) com número diploide de 2n = 30. Acta Zool Lilloana 1992, 41:165-171.
  • [9]Kaiser H, Mais C, Bolaños F, Steinlein C, Feichtinger W, Schmid M: Chromosomal investigation of three Costa Rican frogs from the 30-chromosome radiation of Hyla with the description of a unique geographic variation in nucleolus organizer regions. Genetica 1996, 98:95-102.
  • [10]Medeiros LR, Rossa-Feres DC, Recco-Pimentel SM: Chromosomal differentiation of Hyla nana and Hyla sanborni (Anura, Hylidae) with a description of NOR polymorphism in H. nana. J Hered 2003, 94:149-154.
  • [11]Gruber SL, Haddad CFB, Kasahara S: Evaluating the karyotypic diversity in species of Hyla (Anura; Hylidae) with 2n = 30 chromosomes based on the analysis of ten species. Folia Biol 2005, 51:68-75.
  • [12]Wiens JJ, Kuczynski CA, Hua X, Moen DS: An expanded phylogeny of treefrogs (Hylidae) based on nuclear and mitochondrial sequence data. Mol Phylogenet Evol 2010, 55:871-882.
  • [13]Pyron RA, Wiens JJ: A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol 2011, 61:543-583.
  • [14]Duellman WE: A new species of small yellow Hyla from Peru (Anura: Hylidae). Amphibia-Reptilia 1982, 3:153-160.
  • [15]Fouquet A, Noonan B, Blanc M, Orrico VGD: Phylogenetic position of Dendropsophus gaucheri (Lescure and Marty 2000) highlights the need for an in-depth investigation of the phylogenetic relationships of Dendropsophus (Anura: Hylidae). Zootaxa 2011, 3035:59-67.
  • [16]Napoli MF, Caramaschi U: Duas novas espécies de Hyla Laurenti, 1768 do Brasil central afins de H. tritaeniata Bokermann, 1965 (Amphibia, Anura, Hylidae). Bol Mus Nac 1998, 391:1-12.
  • [17]Napoli MF, Caramaschi U: Geographic variation of Hyla rubicundula and Hyla anataliasiasi with the description of a new species (Anura, Hylidae). Alytes 1999, 16:165-189.
  • [18]Carvalho-e-Silva SP, Carvalho-e-Silva AMPT, Izecksohn E: Nova espécie de Hyla Laurenti do grupo de H. microcephala Cope (Amphibia, Anura, Hylidae) do nordeste do Brasil (Amphibia, Anura, Hylidae). Rev Bras Zool 2003, 20:553-558.
  • [19]Langone JA, Basso NG: Distribucion geografica y sinonima de Hyla nana Boulenger, 1889 y Hyla sanborni Schmidt, 1944 (Anura, Hylidae) y observaciones sobre formas afines. Com Zool Mus Hist Nat Montevideo 1987, 164:1-17.
  • [20]Barrio A: Sobre la validez de Hyla sanborni y D. uruguaya (Anura, Hylidae). Physis 1967, 26:521-524.
  • [21]Cei JM: Additional notes to “Amphibians of Argentine”: an update, 1980–1986. Monitore Zool Ital 1980, 21:209-272.
  • [22]Basso NG, Perí SI, di Tada IE: Revalidacion de Hyla sanborni, Schmidt, 1944 (Anura: Hylidae). Cuad Herp 1985, 1:1-11.
  • [23]Lutz B: Brazilian species of Hyla. Austin and London: University of Texas Press; 1973.
  • [24]Duellman WE: Liste der rezenten Amphibien und Reptilien: Hylidae, Centrolenidae, Pseudidae. Das Tierreich 1977, 95:1-225.
  • [25]Napoli MF, Caramaschi U: Description and variation of a new Brazilian species of Hyla rubicundula group (Anura, Hylidae). Alytes 2000, 17:165-184.
  • [26]Catroli GF, Kasahara S: Cytogenetic data on species of the family Hylidae (Amphibia, Anura): results and perspectives. Publ UEPG Ci Biol Saúde 2009, 15:67-86.
  • [27]Green DM, Sessions SK: Nomenclature for chromosomes. In Amphibian Cytogenetics and Evolution. Edited by Green DM, Sessions SK. San Diego: Academic; 1991:431-432.
  • [28]Wiens JJ, Fetzner JW, Parkinson CL, Reeder TW: Hylid frog phylogeny and sampling strategies for speciose clades. Syst Biol 2005, 54:778-807.
  • [29]Fouquet A, Gilles A, Vences M, Marty C, Blanc M, Gemmell NJ: Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. PLoS One 2007, 2:e1109.
  • [30]Faivovich J, Garcia PCA, Ananias F, Lanari L, Basso NG, Wheeler WC: A molecular perspective on the phylogeny of the Hyla pulchella species group (Anura, Hylidae). Mol Phylogenet Evol 2004, 32:938-950.
  • [31]Wiens JJ, Graham CH, Moen DS, Smith SA, Reeder TW: Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. Am Nat 2006, 168:579-596.
  • [32]Jungfer KH, Reichle S, Piskurek O: Description of a new cryptic southwestern Amazonian species of leaf-gluing treefrog, genus Dendropsophus (Amphibia: Anura: Hylidae). Salamandra 2010, 46:204-214.
  • [33]Darst CR, Cannatella DC: Novel relationships among hyloid frogs inferred from 12S and 16S mitochondrial DNA sequences. Mol Phylogenet Evol 2004, 31:462-475.
  • [34]King M, Rofe R: Karyotype variation in the Australian gekko Phyllodactylus marmoratus (Gray) (Gekkonidae: Reptilia). Chromosoma 1976, 54:75-87.
  • [35]Schmid M: Chromosome banding in Amphibia I. Constitutive heterochromatin and nucleolus organizer regions in Bufo and Hyla. Chromosoma 1978, 66:361-388.
  • [36]King M: C-banding studies in Australian hylid frogs: secondary constriction structure and the concept of euchromatin transformation. Chromosoma 1980, 80:191-207.
  • [37]Howell WM, Black DA: Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 1980, 36:1014-1015.
  • [38]Viegas-Péquignot E: In situ hybridization to chromosomes with biotinylated probes. In In Situ Hybridization: a Practical Approach. Edited by Willernson D. Oxford: Oxford University Press; 1992:137-158.
  • [39]Meunier-Rotival M, Cortadas J, Macaya G: Isolation and organization of calf ribosomal DNA. Nucleic Acids Res 1979, 6:2109-2123.
  • [40]Graybeal A: Phylogenetic relationships of bufonid frogs and tests of alternate macroevolutionary hypotheses characterizing their radiation. Zool. Jour. Linn. Soc. 1997, 119:297-338.
  • [41]Varón A, Vinh LS, Wheeler WC: POY version 4: phylogenetic analysis using dynamic homologies. Cladistics 2010, 26:72-85.
  • [42]Goloboff PA, Farris JS, Nixon KC: T.N.T.: Tree analysis using new technology. Program and documentation. 2003. [Available at http://www.zmuc.dk/public/phylogeny webcite]
  • [43]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [44]Nylander JAA: MrModeltest v2. In Program distributed by the author. Uppsala University: Evolutionary Biology Centre; 2004.
  • [45]Thompson JD, Higgins DG, Gibson TJ: Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
  文献评价指标  
  下载次数:43次 浏览次数:14次