期刊论文详细信息
BMC Evolutionary Biology
Microcephaly genes evolved adaptively throughout the evolution of eutherian mammals
Nicholas I Mundy2  Stephen H Montgomery1 
[1] Department Genetics, Evolution & Environment, University College London, Gower Street, London WC1E 6BT, UK;Department Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
关键词: Neurogenesis;    Microcephaly genes;    Mammals;    CDK5RAP2;    Brain size;    Adaptive evolution;    ASPM;   
Others  :  855442
DOI  :  10.1186/1471-2148-14-120
 received in 2014-03-03, accepted in 2014-05-23,  发布年份 2014
PDF
【 摘 要 】

Background

Genes associated with the neurodevelopmental disorder microcephaly display a strong signature of adaptive evolution in primates. Comparative data suggest a link between selection on some of these loci and the evolution of primate brain size. Whether or not either positive selection or this phenotypic association are unique to primates is unclear, but recent studies in cetaceans suggest at least two microcephaly genes evolved adaptively in other large brained mammalian clades.

Results

Here we analyse the evolution of seven microcephaly loci, including three recently identified loci, across 33 eutherian mammals. We find extensive evidence for positive selection having acted on the majority of these loci not just in primates but also across non-primate mammals. Furthermore, the patterns of selection in major mammalian clades are not significantly different. Using phylogenetically corrected comparative analyses, we find that the evolution of two microcephaly loci, ASPM and CDK5RAP2, are correlated with neonatal brain size in Glires and Euungulata, the two most densely sampled non-primate clades.

Conclusions

Together with previous results, this suggests that ASPM and CDK5RAP2 may have had a consistent role in the evolution of brain size in mammals. Nevertheless, several limitations of currently available data and gene-phenotype tests are discussed, including sparse sampling across large evolutionary distances, averaging gene-wide rates of evolution, potential phenotypic variation and evolutionary reversals. We discuss the implications of our results for studies of the genetic basis of brain evolution, and explicit tests of gene-phenotype hypotheses.

【 授权许可】

   
2014 Montgomery and Mundy; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140722033807479.pdf 429KB PDF download
63KB Image download
【 图 表 】

【 参考文献 】
  • [1]Zhang J: Evolution of the human ASPM gene, a major determinant of brain size. Genetics 2003, 165(4):2063-2070.
  • [2]Evans PD, Anderson JR, Vallender EJ, Choi SS, Lahn BT: Reconstructing the evolutionary history of microcephalin, a gene controlling human brain size. Hum Mol Genet 2004, 13(11):1139-1145.
  • [3]Evans PD, Anderson JR, Vallender EJ, Gilbert SL, Malcom CM, Dorus S, Lahn BT: Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Hum Mol Genet 2004, 13(5):489-494.
  • [4]Kouprina N, Pavlicek A, Mochida GH, Solomon G, Gersch W, Yoon YH, Collura R, Ruvolo M, Barrett JC, Woods CG, Walsh CA, Jurka J, Larionov V: Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion. PLoS Biol 2004, 2(5):e126.
  • [5]Wang YQ, Su B: Molecular evolution of microcephalin, a gene determining human brain size. Hum Mol Genet 2004, 13(11):1131-1137.
  • [6]Evans PD, Vallender EJ, Lahn BT: Molecular evolution of the brain size regulator genes CDK5RAP2 and CENPJ. Gene 2006, 375:75-79.
  • [7]Ali F, Meier R: Positive selection in ASPM is correlated with cerebral cortex evolution across primates but not with whole-brain size. Mol Biol Evol 2008, 25(11):2247-2250.
  • [8]Montgomery SH, Capellini I, Venditti C, Barton RA, Mundy NI: Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates. Mol Biol Evol 2011, 28(1):625-638.
  • [9]Jackson AP, McHale DP, Campbell DA, Jafri H, Rashid Y, Mannan J, Karbani G, Corry P, Levene MI, Mueller RF, Markham AF, Lench NJ, Woods GC: Primary autosomal recessive microcephaly (MCPH1) maps to chromosome 8p22-pter. Am J Hum Genet 1998, 63(2):541-546.
  • [10]Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, Askham JM, Springell K, Mahadevan M, Crow YJ, Markham AF, Walsh CA, Woods CG: ASPM is a major determinant of cerebral cortical size. Nat Genet 2002, 32(2):316-320.
  • [11]Bond J, Roberts E, Springell K, Lizarraga S, Scott S, Higgins J, Hampshire DJ, Morrison EE, Leal GF, Silva EO, Costa SMR, Baralle D, Raponi M, Karbani G, Rashid Y, Jafri H, Bennett C, Corry P, Walsh CA, Woods CG: A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat Genet 2005, 37(4):353-355.
  • [12]Kumar A, Girimaji SC, Duvvari MR, Blanton SH: Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. Am J Hum Genet 2009, 84(2):286-290.
  • [13]Guernsey DL, Jiang H, Hussin J, Arnold M, Bouyakdan K, Perry S, Babineau-Sturk T, Beis J, Dumas N, Evans SC, Ferguson M, Matsuoka M, Macgillivray C, Nightingale M, Patry L, Rideout AL, Thomas A, Orr A, Hoffmann I, Michaud JL, Awadalla P, Meek DC, Ludman M, Samuels ME: Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am J Hum Genet 2010, 87(1):40-51.
  • [14]Nicholas AK, Khurshid M, Désir J, Carvalho OP, Cox JJ, Thornton G, Kauser R, Ansar M, Ahmad W, Verloes A, Passemard S, Misson JP, Lindsay S, Gergely F, Dobyns WB, Roberts E, Abramowicz M, Woods CG: WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nat Genet 2010, 42(11):1010-1014.
  • [15]Timothy WY, Mochida GH, Tischfield DJ, Sgaier SK, Flores-Sarnat L, Sergi CM, Topçu M, McDonald MT, Barry BJ, Felie J, Sunu C, Dobyns WB, Folkerth RD, Barkovich AJ, Walsh CA: Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat Genet 2010, 42(11):1015-1020.
  • [16]Bond J, Woods CG: Cytoskeletal genes regulating brain size. Curr Opin Cell Biol 2006, 18(1):95-101.
  • [17]Cox J, Jackson AP, Bond J, Woods CG: What primary microcephaly can tell us about brain growth. Trends Mol Med 2006, 12(8):358-366.
  • [18]Thornton GK, Woods CG: Primary microcephaly: do all roads lead to Rome? Trends Genet 2009, 25(11):501-510.
  • [19]Evans PD, Gilbert SL, Mekel-Bobrov N, Vallender EJ, Anderson JR, Vaez-Azizi LM, Tichkoff AS, Hudson RR, Lahn BT: Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 2005, 309(5741):1717-1720.
  • [20]Mekel-Bobrov N, Gilbert SL, Evans PD, Vallender EJ, Anderson JR, Hudson RR, Tishkoff SA, Lahn BT: Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens. Science 2005, 309(5741):1720-1722.
  • [21]Montgomery SH, Mundy NI: Evolution of ASPM is associated with both increases and decreases in brain size in primates. Evolution 2012, 66(3):927-932.
  • [22]Montgomery SH, Mundy NI: Microcephaly genes and the evolution of sexual dimorphism in primate brain size. J Evol Biol 2013, 26(4):906-911.
  • [23]Wang JK, Li Y, Su B: A common SNP of MCPH1 is associated with cranial volume variation in Chinese population. Hum Mol Genet 2008, 17(9):1329-1335.
  • [24]Rimol LM, Agartz I, Djurovic S, Brown AA, Roddey JC, Kähler AK, Mattingsdal M, Athanasiu L, Joyner AH, Schork NJ, Halgren E, Sundet K, Melle I, Dale AM, Andreassen OA: Sex-dependent association of common variants of microcephaly genes with brain structure. Proc Natl Acad Sci USA 2010, 107(1):384-388.
  • [25]Shi L, Li M, Lin Q, Qi X, Su B: Functional divergence of the brain-size regulating gene MCPH1 during primate evolution and the origin of humans. BMC Biol 2013, 11(1):62. BioMed Central Full Text
  • [26]McGowen MR, Montgomery SH, Clark C, Gatesy J: Phylogeny and adaptive evolution of the brain-development gene microcephalin (MCPH1) in cetaceans. BMC Evol Biol 2012, 11:98.
  • [27]Xu S, Chen Y, Cheng Y, Yang D, Zhou X, Xu J, Zhou K, Yang G: Positive selection at the ASPM gene coincides with brain size enlargements in cetaceans. Proc Roy Soc B 2012, 279(1746):4433-4440.
  • [28]Montgomery SH, Mundy NI, Bartion RA: ASPM and mammalian brain evolution: A case study in the difficulty in making macroevolutionary inferences about gene-phenotype associations. Proc Roy Soc B 2013, 281(1778):20131743.
  • [29]Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24(8):1586-1591.
  • [30]Nielsen R, Yang Z: Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 1998, 148(3):929-936.
  • [31]Yang Z, Nielsen R, Goldman N, Pedersen AMK: Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 2000, 155(1):431-449.
  • [32]Yang Z: Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 1998, 15(5):568-573.
  • [33]Yang Z, Nielsen R: Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol 1998, 46(4):409-418.
  • [34]Bielawski JP, Yang Z: A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution. J Mol Evol 2004, 59(1):121-132.
  • [35]Nikolaev SI, Montoya-Burgos JI, Popadin K, Parand L, Margulies EH, Antonarakis SE: Life-history traits drive the evolutionary rates of mammalian coding and noncoding genomic elements. Proc Natl Acad Sci USA 2007, 104(51):20443-20448.
  • [36]Welch JJ, Bininda-Emonds OR, Bromham L: Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evol Biol 2008, 8(1):53. BioMed Central Full Text
  • [37]Lanfear R, Welch JJ, Bromham L: Watching the clock: studying variation in rates of molecular evolution between species. Trends Ecol Evol 2010, 25(9):495-503.
  • [38]McGowen MR, Grossman LI, Wildman DE: Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown. Proc Roy Soc B 2012, 279(1743):3643-3651.
  • [39]Goodman M, Sterner KN, Islam M, Uddin M, Sherwood CC, Hof PR, Hou ZC, Lipovich L, Jia H, Grossman L, Wildman DE: Phylogenomic analyses reveal convergent patterns of adaptive evolution in elephant and human ancestries. Proc Natl Acad Sci USA 2009, 106(49):20824-20829.
  • [40]Jerison H: Evolution of the Brain and Intelligence. New York: Academic; 1973.
  • [41]Montgomery SH, Capellini I, Barton RA, Mundy NI: Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and Homo floresiensis. BMC Biol 2010, 8(1):9. BioMed Central Full Text
  • [42]Marino L, McShea DW, Uhen MD: Origin and evolution of large brains in toothed whales. Anat Rec A Discov Mol Cell Evol Biol 2004, 281(2):1247-1255.
  • [43]Montgomery SH, Geisler JH, McGowen MR, Fox C, Marino L, Gatesy J: The evolutionary history of cetacean brain and body size. Evolution 2013, 67(11):3339-3353.
  • [44]Shoshani J: Understanding proboscidean evolution: a formidable task. Trends Ecol Evol 1998, 13(12):480-487.
  • [45]Rakic P: Specification of cerebral cortical areas. Science 1988, 241(4862):170-176.
  • [46]Rakic P: Adult neurogenesis in mammals: an identity crisis. J Neurosci 2002, 22(3):614-618.
  • [47]Bhardwaj RD, Curtis MA, Spalding KL, Buchholz BA, Fink D, Björk-Eriksson T, Nordborg C, Gage FH, Druid H, Eriksson PS, Frisén J: Neocortical neurogenesis in humans is restricted to development. Proc Natl Acad Sci USA 2006, 103(33):12564-12568.
  • [48]MacKenna MC, Bell SK: Classification of mammals: above the species level. Edited by Simpson GG. New York: Columbia University Press; 1997.
  • [49]Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, Fiedel-Alon A, Tanenbaum DM, Civello D, White TJ, Sninsky JJ, Adams MD, Cargill M: A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 2005, 3(6):e170.
  • [50]Shi P, Bakewell MA, Zhang J: Did brain-specific genes evolve faster in humans than in chimpanzees? Trends Genet 2006, 22(11):608-613.
  • [51]Wang HY, Chien HC, Osada N, Hashimoto K, Sugano S, Gojobori T, Chou CK, Tsai SF, Wu CI, Shen CKJ: Rate of evolution in brain-expressed genes in humans and other primates. PLoS Biol 2006, 5(2):e13.
  • [52]Kosiol C, Vinař T, da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R, Siepel A: Patterns of positive selection in six Mammalian genomes. PLoS Genet 2008, 4(8):e1000144.
  • [53]Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I, Herrero J, Hobolth A, Lappalainen T, Mailund T, Marques-Bonet T, McCarthy S, Montgomery SH, Schwalie PC, Tang YA, Ward MC, Xue Y, Yngvadottir B, Alkan C, Andersen LN, Ayub Q, Ball EV, Beal K, Bradley BJ, Chen Y, Clee CM, Fitzgerald S, Graves TA, Gu Y, Heath P, Heger A, et al.: Insights into hominid evolution from the gorilla genome sequence. Nature 2012, 483(7388):169-175.
  • [54]George RD, McVicker G, Diederich R, Ng SB, MacKenzie AP, Swanson WJ, Shendure J, Thomas JH: Trans genomic capture and sequencing of primate exomes reveals new targets of positive selection. Genome Res 2011, 21(10):1686-1694.
  • [55]Yang Z, Wong WS, Nielsen R: Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 2005, 22(4):1107-1118.
  • [56]Fong KW, Choi YK, Rattner JB, Qi RZ: CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the γ-tubulin ring complex. Mol Biol Cell 2008, 19(1):115-125.
  • [57]Cormier A, Clément MJ, Knossow M, Lachkar S, Savarin P, Toma F, Sobel A, Gigant B, Curmi PA: The PN2-3 domain of centrosomal P4. 1-associated protein implements a novel mechanism for tubulin sequestration. J Biol Chem 2009, 284(11):6909-6917.
  • [58]Buchman JJ, Tseng HC, Zhou Y, Frank CL, Xie Z, Tsai LH: CDK5RAP2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex. Neuron 2010, 66(3):386-402.
  • [59]Fish JL, Kosodo Y, Enard W, Pääbo S, Huttner WB: ASPM specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc Natl Acad Sci USA 2006, 103(27):10438-10443.
  • [60]Rujano MA, Sanchez-Pulido L, Pennetier C, le Dez G, Basto R: The microcephaly protein ASP regulates neuroepithelium morphogenesis by controlling the spatial distribution of myosin II. Nat Cell Biol 2013, 15:1294-1306.
  • [61]Götz M, Huttner WB: The cell biology of neurogenesis. Nat Rev Mol Cell Biol 2005, 6(10):777-788.
  • [62]Kriegstein A, Noctor S, Martínez-Cerdeño V: Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 2006, 7(11):883-890.
  • [63]Rakic P: A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 1995, 18(9):383-388.
  • [64]Caviness VS Jr, Takahashi T, Nowakowski RS: Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci 1995, 18(9):379-383.
  • [65]Wang X, Tsai JW, Imai JH, Lian WN, Vallee RB, Shi SH: Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 2009, 461(7266):947-955.
  • [66]Montgomery SH, Mundy NI: Positive selection on NIN, a gene involved in neurogenesis, and primate brain evolution. Genes, Brain and Behav 2012, 11(8):903-910.
  • [67]Fietz SA, Kelava I, Vogt J, Wilsch-Bräuninger M, Stenzel D, Fish JL, Corbeil D, Riehn A, Dister A, Nitsch R, Huttner WB: OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 2010, 13(6):690-699.
  • [68]Rakic P: Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 2009, 10(10):724-735.
  • [69]Chaplin TA, Yu HH, Soares JG, Gattass R, Rosa MG: A conserved pattern of differential expansion of cortical areas in simian primates. J Neurosci 2013, 33(38):15120-15125.
  • [70]Finlay BL, Darlington RB: Linked regularities in the development and evolution of mammalian brains. Science 1995, 268(5217):1578-1584.
  • [71]Barton RA, Harvey PH: Mosaic evolution of brain structure in mammals. Nature 2000, 405(6790):1055-1058.
  • [72]Parker J, Tsagkogeorga G, Cotton JA, Liu Y, Provero P, Stupka E, Rossiter SJ: Genome-wide signatures of convergent evolution in echolocating mammals. Nature 2013, 502(7470):228-231.
  • [73]Zhang J, Kumar S: Detection of convergent and parallel evolution at the amino acid sequence level. Mol Biol Evol 1997, 14(5):527-536.
  • [74]Kriener K, O'hUigin C, Tichy H, Klein J: Convergent evolution of major histocompatibility complex molecules in humans and New World monkeys. Immunogenetics 2000, 51(3):169-178.
  • [75]Majerus ME, Mundy NI: Mammalian melanism: natural selection in black and white. Trends Genet 2003, 19(11):585-588.
  • [76]Lartillot N, Poujol R: A phylogenetic model for investigating correlated evolution of substitution rates and continuous phenotypic characters. Mol Biol Evol 2011, 28(1):729-744.
  • [77]Herculano-Houzel S, Mota B, Lent R: Cellular scaling rules for rodent brains. Proc Natl Acad Sci USA 2006, 103(32):12138-12143.
  • [78]Herculano-Houzel S, Collins CE, Wong P, Kaas JH: Cellular scaling rules for primate brains. Proc Natl Acad Sci USA 2007, 104(9):3562-3567.
  • [79]Kelava I, Reillo I, Murayama AY, Kalinka AT, Stenzel D, Tomancak P, Matsuzaki F, Lebrand C, Sasaki E, Schwamborn JC, Okano H, Huttner WB, Borrell V: Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus. Cereb Cortex 2012, 22(2):469-481.
  • [80]Kelava I, Lewitus E, Huttner WB: The secondary loss of gyrencephaly as an example of evolutionary phenotypical reversal. Front Neuroanat 2013, 7:16.
  • [81]Ford SM: Callitrichids as phyletic dwarfs, and the place of the Callitrichidae in Platyrrhini. Primates 1980, 21(1):31-43.
  • [82]Montgomery SH, Mundy NI: Parallel episodes of phyletic dwarfism in callitrichid and cheirogaleid primates. J Evol Biol 2013, 26(4):810-819.
  • [83]O’Connor TD, Mundy NI: Evolutionary modeling of genotype-phenotype associations, and application to primate coding and non-coding mtDNA rate variation. Evol Bioinform Online 2013, 9:301.
  • [84]Pulvers JN, Bryk J, Fish JL, Wilsch-Bräuninger M, Arai Y, Schreier D, Naumann R, Helppi J, Habermann B, Vogt J, Nitsch R, Tóth A, Enard W, Pääbo S, Hutnner WB: Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline. Proc Natl Acad Sci USA 2010, 107(38):16595-16600.
  • [85]Boddy AM, McGowen MR, Sherwood CC, Grossman LI, Goodman M, Wildman DE: Comparative analysis of encephalization in mammals reveals relaxed constraints on anthropoid primate and cetacean brain scaling. J Evol Biol 2012, 25(5):981-994.
  • [86]Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA: Cerebral organoids model human brain development and microcephaly. Nature 2013, 501(7467):373-379.
  • [87]Pride DT: SWAAP: a tool for analyzing substitutions and similarity in multiple alignments. 2000. Distributed by the author
  • [88]Nei M, Gojobori T: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 1986, 3(5):418-426.
  • [89]Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA: Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 2007, 35(suppl 2):W71-W74.
  • [90]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [91]Bininda-Emonds OR, Cardillo M, Jones KE, MacPhee RD, Beck RM, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A: The delayed rise of present-day mammals. Nature 2007, 446(7135):507-512.
  • [92]Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Aizrik E, Simão TLL, Stadler T, Rabosky DL, Honeycutt RL, Flynn JJ, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick A, Westerman M, Ayoub NA, Springer MS, Murphy WJ: Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 2011, 334(6055):521-524.
  • [93]Wong WS, Yang Z, Goldman N, Nielsen R: Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 2004, 168(2):1041-1051.
  • [94]Swanson WJ, Nielsen R, Yang Q: Pervasive adaptive evolution in mammalian fertilization proteins. Mol Biol Evol 2003, 20(1):18-20.
  • [95]Fletcher W, Yang Z: The effect of insertions, deletions, and alignment errors on the branch-site test of positive selection. Mol Biol Evol 2010, 27(10):2257-2267.
  • [96]Weadick CJ, Chang BS: An improved likelihood ratio test for detecting site-specific functional divergence among clades of protein-coding genes. Mol Biol Evol 2012, 29(5):1297-1300.
  • [97]Dorus S, Vallender EJ, Evans PD, Anderson JR, Gilbert SL, Mahowald M, Wycoff GJ, Malcom CM, Lahn BT: Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 2004, 119(7):1027-1040.
  • [98]Nadeau NJ, Burke T, Mundy NI: Evolution of an avian pigmentation gene correlates with a measure of sexual selection. Proc Roy Soc B 2007, 274(1620):1807-1813.
  • [99]Pagel M: Inferring the historical patterns of biological evolution. Nature 1999, 401(6756):877-884.
  • [100]Venditti C, Pagel M: Speciation as an active force in promoting genetic evolution. Trends Ecol Evol 2010, 25(1):14-20.
  • [101]Lüke L, Vicens A, Serra F, Luque-Larena JJ, Dopazo H, Roldan ER, Gomendio M: Sexual selection halts the relaxation of protamine 2 among rodents. PLoS One 2011, 6(12):e29247.
  • [102]Barton RA, Capellini I: Maternal investment, life histories, and the costs of brain growth in mammals. Proc Natl Acad Sci USA 2011, 108(15):6169-6174.
  文献评价指标  
  下载次数:6次 浏览次数:8次