期刊论文详细信息
BMC Neuroscience
670 nm light mitigates oxygen-induced degeneration in C57BL/6J mouse retina
Jan Provis1  Krisztina Valter1  Matthew Rutar2  Riccardo Natoli1  Rizalyn Albarracin2 
[1]ANU Medical School, The Australian National University, Canberra, ACT 0200, Australia
[2]ARC Centre of Excellence in Vision Science and John Curtin School of Medical Research, 131 Garran Road, Canberra, ACT 0200, Australia
关键词: Oxygen toxicity;    Retinal inflammation;    Oxidative stress;    Cytochrome oxidase;    Neuroprotection;    Retinal degeneration;    Hyperoxia;    Photobiomodulation;    Near infrared;    nm light irradiation;    670 ;   
Others  :  1139994
DOI  :  10.1186/1471-2202-14-125
 received in 2012-11-23, accepted in 2013-09-18,  发布年份 2013
PDF
【 摘 要 】

Background

Irradiation with light wavelengths from the far red (FR) to the near infrared (NIR) spectrum (600 nm -1000 nm) has been shown to have beneficial effects in several disease models. In this study, we aim to examine whether 670 nm red light pretreatment can provide protection against hyperoxia-induced damage in the C57BL/6J mouse retina. Adult mice (90–110 days) were pretreated with 9 J/cm2 of 670 nm light once daily for 5 consecutive days prior to being placed in hyperoxic environment (75% oxygen). Control groups were exposed to hyperoxia, but received no 670 nm light pretreatment. Retinas were collected after 0, 3, 7, 10 or 14 days of hyperoxia exposure (n = 12/group) and prepared either for histological analysis, or RNA extraction and quantitative polymerase chain reaction (qPCR). Photoreceptor damage and loss were quantified by counting photoreceptors undergoing cell death and measuring photoreceptor layer thickness. Localization of acrolein, and cytochrome c oxidase subunit Va (Cox Va) were identified through immunohistochemistry. Expression of heme oxygenase-1 (Hmox-1), complement component 3 (C3) and fibroblast growth factor 2 (Fgf-2) genes were quantified using qPCR.

Results

The hyperoxia-induced photoreceptor loss was accompanied by reduction of metabolic marker, Cox Va, and increased expression of oxidative stress indicator, acrolein and Hmox-1. Pretreatment with 670 nm red light reduced expression of markers of oxidative stress and C3, and slowed, but did not prevent, photoreceptor loss over the time course of hyperoxia exposure.

Conclusion

The damaging effects of hyperoxia on photoreceptors were ameliorated following pretreatment with 670 nm light in hyperoxic mouse retinas. These results suggest that pretreatment with 670 nm light may provide stability to photoreceptors in conditions of oxidative stress.

【 授权许可】

   
2013 Albarracin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324042134684.pdf 2950KB PDF download
Figure 10. 63KB Image download
Figure 9. 23KB Image download
Figure 8. 33KB Image download
Figure 7. 184KB Image download
Figure 6. 38KB Image download
Figure 5. 82KB Image download
Figure 5. 37KB Image download
Figure 3. 83KB Image download
Figure 2. 72KB Image download
Figure 1. 54KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 5.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Whelan HT, Smits RL, Buchman EV, Whelan NT, Turner SG, Margolis DA, Cevenini V, Stinson H, Ignatius R, Martin T, et al.: Effect of NASA light-emitting diode irradiation on wound healing. Lasers Surg Med 2001, 19(6):305-314.
  • [2]Whelan HT: DARPA soldier self care: rapid healing of laser eye injuries with light emitting diode technology. USA: St Pete Beach; 2004. [RTO HFM symposium on combat casualty care in ground based tactical situations: trauma technology and emergency medical procedures. vol. 109]
  • [3]Zhang Y, Song S, Fong CC, Tsang CH, Yang Z, Yang M: cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light. J Invest Dermatol 2003, 120(5):849-857.
  • [4]Mester E, Spiry T, Szende B, Tota JG: Effect of laser rays on wound healing. Am J Surg 1971, 122(4):532-535.
  • [5]Liang H, Whelan H, Eells J, Wong-Riley M: Near-infrared light via light-emitting diode treated is therapeutic against rotenone- and MPP + −induced neurotoxicity. Neuroscience 2008, 153(4):963-974.
  • [6]Oron U, Yaakobi T, Oron A, Mordechovitz D, Shofti R, Hayam G, Dror U, Gepstein L, Wolf T, Haudenschild C, et al.: Low-energy laser irradiation reduces formation of scar tissue after myocardial infarction in rats and dogs. Circulation 2001, 103(2):296-301.
  • [7]Whelan HT, Buchmann EV, Dhokalia A, Kane MP, Whelan NT, Wong-Riley MT, Eells JT, Gould LJ, Hammamieh R, Das R, et al.: Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice. J Clin Laser Med Surg 2003, 21(2):67-74.
  • [8]Simunovic Z, Ivankovich A, Depolo A: Wound healing of animal and human body sport and traffic accident injuries using low-level laser therapy treatment: a randomized clinical study of seventy-four patients with control group. J Clin Laser Med Surg 2000, 18(2):67-73.
  • [9]Muili KA, Gopalakrishnan S, Meyer SL, Eells JT, Lyons JA: Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light. PLoS One 2012, 7(1):24.
  • [10]Rojas JC, Lee J, John JM, Gonzalez-Lima F: Neuroprotective effects of near-infrared light in an in vivo model of mitochondrial optic neuropathy. J Neurosci 2008, 28(50):13511-13521.
  • [11]Eells JT, Salomao S, Berezovsky A, Moraes M, Roth JM, Paula H, Sherman J, Lam T, Sadun AA: 670 nm LED treatment of affected carriers of the 11778 Leber’s hereditary optic neuropathy (LHON) mutation in Brazil. Invest Ophthalmol Vis Sci 2004, 45(5):828.
  • [12]Eells JT, Henry MM, Summerfelt P, Wong-Riley MT, Buchmann EV, Kane M, Whelan NT, Whelan HT: Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci USA 2003, 100(6):3439-3444.
  • [13]Eells J, DeSmet K, Kirk D, Wong-Riley M, Whelan H, Hoeve J Ver, Nork M, Stone J, Valter K (Eds): Photobiomodulation for the treatment of retinal injury and retinal degenerative diseases. New York: Springer; 2008.
  • [14]Qu C, Cao W, Fan Y, Lin Y: Near-infrared light protect the photoreceptor from light-induced damage in rats. Adv Exp Med Biol 2010, 664:365-374.
  • [15]Albarracin R, Eells J, Valter K: Photobiomodulation protects the retina from light-induced photoreceptor degeneration. Invest Ophthalmol Vis Sci 2011, 52:3582-3592.
  • [16]Albarracin R, Valter K: 670 nm red light preconditioning supports Müller cell function: evidence from the white light-induced damage model in the rat retina. Photochem Photobiol 2012, 88(6):1418-1427.
  • [17]Natoli R, Zhu Y, Valter K, Bisti S, Eells J, Stone J: Gene and noncoding RNA regulation underlying photoreceptor protection: microarray study of dietary antioxidant saffron and photobiomodulation in rat retina. Mol Vis 2010, 16:1801-1822.
  • [18]Karu T: Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 1999, 49(1):1-17.
  • [19]Wong-Riley MTT, Bai X, Buchmann E, Whelan HT: Light-emitting diode treatment reverses the effect of TTX on cytochrome oxidase in neurons. Neuroreport 2001, 12(14):3033-3037.
  • [20]Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, Kane M, Whelan HT: Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem 2005, 280(6):4761-4771.
  • [21]Barazzone C, Horowitz S, Donati YR, Rodriguez I, Piguet PF: Oxygen toxicity in mouse lung: pathways to cell death. Am J Respir Cell Mol Biol 1998, 19(4):573-581.
  • [22]Dickens F: The toxic effects of oxygen on brain metabolism and on tissue enzymes; tissue enzymes. Biochem J 1946, 40(1):171-187.
  • [23]Noell WK: Metabolic injuries of the visual cell. Am J Ophthalmol 1955, 40(5 Part 2):60-70.
  • [24]Bresnick GH: Oxygen-induced visual cell degeneration in the rabbit. Invest Ophthalmol 1970, 9(5):372-387.
  • [25]Yamada H, Yamada E, Hackett SF, Ozaki H, Okamoto N, Campochiaro PA: Hyperoxia causes decreased expression of vascular endothelial growth factor and endothelial cell apoptosis in adult retina. J Cell Physiol 1999, 179(2):149-156.
  • [26]Mervin K, Stone J: Regulation by oxygen of photoreceptor death in the developing and adult C57BL/6J mouse. Exp Eye Res 2002, 75(6):715-722.
  • [27]Ishikawa K, Yoshida S, Kadota K, Nakamura T, Niiro H, Arakawa S, Yoshida A, Akashi K, Ishibashi T: Gene expression profile of hyperoxic and hypoxic retinas in a mouse model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 2010, 51(8):4307-4319.
  • [28]Karu TI, Kolyakov SF: Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 2005, 23(4):355-361.
  • [29]Zhu Y, Natoli R, Valter K, Stone J: Differential gene expression in mouse retina related to regional differences in vulnerability to hyperoxia. Mol Vis 2010, 16:740-755.
  • [30]Natoli R, Provis J, Valter K, Stone J: Expression and role of the early-response gene Oxr1 in the hyperoxia-challenged mouse retina. Invest Ophthalmol Vis Sci 2008, 49(10):4561-4567.
  • [31]Natoli R, Valter K, Chrysostomou V, Stone J, Provis J: Morphological, functional and gene expression analysis of the hyperoxic mouse retina. Exp Eye Res 2011, 92(4):306-314.
  • [32]Wellard J, Lee D, Valter K, Stone J: Photoreceptors in the rat retina are specifically vulnerable to both hypoxia and hyperoxia. Vis Neurosci 2005, 22(4):501-507.
  • [33]Wangsa-Wirawan ND, Linsenmeier RA: Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 2003, 121(4):547-557.
  • [34]Wassell J, Davies S, Bardsley W, Boulton M: The photoreactivity of the retinal age pigment lipofuscin. J Biol Chem 1999, 274(34):23828-23832.
  • [35]Yu D-Y, Cringle SJ: Retinal degeneration and local oxygen metabolism. Exp Eye Res 2005, 80(6):745-751.
  • [36]Plafker SM, O'Mealey GB, Szweda LI: Mechanisms for countering oxidative stress and damage in retinal pigment epithelium. Int Rev Cell Mol Biol 2012, 298:135-177.
  • [37]Uchida K, Kanematsu M, Sakai K, Matsuda T, Hattori N, Mizuno Y, Suzuki D, Miyata T, Noguchi N, Niki E, et al.: Protein-bound acrolein: potential markers for oxidative stress. Proc Natl Acad Sci 1998, 95(9):4882-4887.
  • [38]Natoli R, Provis J, Valter K, Stone J: Gene regulation induced in the C57BL/6J mouse retina by hyperoxia: a temporal microarray study. Mol Vis 2008, 14:1983-1994.
  • [39]Li J, Gao X, Qian M, Eaton JW: Mitochondrial metabolism underlies hyperoxic cell damage. Free Radical Biol Med 2004, 36(11):1460-1470.
  • [40]Bazan NG: The metabolism of omega-3 polyunsaturated fatty acids in the eye: the possible role of docosahexaenoic acid and docosanoids in retinal physiology and ocular pathology. Prog Clin Biol Res 1989, 312:95-112.
  • [41]Shen JK, Dong A, Hackett SF, Bell WR, Green WR, Campochiaro PA: Oxidative damage in age-related macular degeneration. Histol Histopathol 2007, 22(12):1301-1308.
  • [42]Lin MT, Beal MF: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443(7113):787-795.
  • [43]Karunadharma PP, Nordgaard CL, Olsen TW, Ferrington DA: Mitochondrial DNA damage as a potential mechanism for age-related macular degeneration. Invest Ophthalmol Vis Sci 2010, 51(11):5470-5479.
  • [44]Madsen-Bouterse SA, Kowluru RA: Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord 2008, 9(4):315-327.
  • [45]Izzotti A, Bagnis A, Sacca SC: The role of oxidative stress in glaucoma. Mutat Res 2006, 612(2):105-114.
  • [46]Fitzgerald M, Bartlett CA, Payne SC, Hart NS, Rodger J, Harvey AR, Dunlop SA: Near infrared light reduces oxidative stress and preserves function in CNS tissue vulnerable to secondary degeneration following partial transection of the optic nerve. J Neurotrauma 2010, 27(11):2107-2119.
  • [47]Peoples C, Shaw VE, Stone J, Jeffery G, Baker GE, Mitrofanis J: Survival of dopaminergic amacrine cells after near-infrared light treatment in MPTP-treated mice. ISRN Neurol 2012, 850150:30.
  • [48]Kokkinopoulos I, Colman A, Hogg C, Heckenlively J, Jeffery G: Age-related retinal inflammation is reduced by 670 nm light via increased mitochondrial membrane potential. Neurobiol Aging 2013, 34:602-609.
  • [49]Anderson DH, Mullins RF, Hageman GS, Johnson LV: A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 2002, 134(3):411-431.
  • [50]Cashman SM, Desai A, Ramo K, Kumar-Singh R: Expression of complement component 3 (C3) from an adenovirus leads to pathology in the murine retina. Invest Ophthalmol Vis Sci 2011, 52(6):3436-3445.
  • [51]LaVail MM, Yasumura D, Matthes MT, Lau-Villacorta C, Unoki K, Sung CH, Steinberg RH: Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 1998, 39(3):592-602.
  • [52]Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, et al.: Complement factor H polymorphism in age-related macular degeneration. Science 2005, 308(5720):385-389.
  • [53]Wu Z, Lauer TW, Sick A, Hackett SF, Campochiaro PA: Oxidative stress modulates complement factor H expression in retinal pigmented epithelial cells by acetylation of foxo3. J Biol Chem 2007, 282(31):22414-22425.
  • [54]Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, Lu L, Ufret RL, Salomon RG, Perez VL: Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 2008, 14(2):194-198.
  • [55]Yamada H, Yamada E, Ando A, Esumi N, Bora N, Saikia J, Sung C-H, Zack DJ, Campochiaro PA: Fibroblast growth factor-2 decreases hyperoxia-induced photoreceptor cell death in mice. Am J Pathol 2001, 159(3):1113-1120.
  • [56]Valter K, Bisti S, Gargini C, Di Loreto S, Maccarone R, Cervetto L, Stone J: Time course of neurotrophic factor upregulation and retinal protection against light-induced damage after optic nerve section. Invest Ophthalmol Vis Sci 2005, 46(5):1748-1754.
  • [57]LaVail M, Unoki K, Yasumura D, Matthes M, Yancopoulus G, Steinberg R: Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. Proc Natl Acad Sci USA 1992, 89:11249-11253.
  • [58]Dean JB, Mulkey DK, Henderson RA, Potter SJ, Putnam RW: Hyperoxia, reactive oxygen species, and hyperventilation: oxygen sensitivity of brain stem neurons. J Appl Physiol 2004, 96(2):784-791.
  • [59]Totan Y, Yagci R, Bardak Y, Ozyurt H, Kendir F, Yilmaz G, Sahin S, Sahin Tig U: Oxidative macromolecular damage in age-related macular degeneration. Curr Eye Res 2009, 34(12):1089-1093.
  • [60]Wu WC, Hu DN, Gao HX, Chen M, Wang D, Rosen R, McCormick SA: Subtoxic levels hydrogen peroxide-induced production of interleukin-6 by retinal pigment epithelial cells. Mol Vis 2010, 16:1864-1873.
  • [61]Eells JT, Wong-Riley MT, VerHoeve J, Henry M, Buchman EV, Kane MP, Gould LJ, Das R, Jett M, Hodgson BD, et al.: Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion 2004, 4(5–6):559-567.
  • [62]Karu TI, Pyatibrat LV, Afanasyeva NI: Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg Med 2005, 36(4):307-314.
  • [63]Zhang R, Mio Y, Pratt PF, Lohr N, Warltier DC, Whelan HT, Zhu D, Jacobs ER, Medhora M, Bienengraeber M: Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism. J Mol Cell Cardiol 2009, 46(1):4-14.
  • [64]Cooper CE: Nitric oxide and cytochrome oxidase: substrate, inhibitor or effector? Trends Biochem Sci 2002, 27(1):33-39.
  • [65]Poyton RO, Ball KA: Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome c oxidase. Discov Med 2011, 11(57):154-159.
  • [66]Liang F-Q, Green L, Wang C, Alssadi R, Godley BF: Melatonin protects human retinal pigment epithelial (RPE) cells against oxidative stress. Exp Eye Res 2004, 78(6):1069-1075.
  • [67]Lahdenranta J, Pasqualini R, Schlingemann RO, Hagedorn M, Stallcup WB, Bucana CD, Sidman RL, Arap W: An anti-angiogenic state in mice and humans with retinal photoreceptor cell degeneration. Proc Natl Acad Sci 2001, 98(18):10368-10373.
  • [68]Smith LE: Pathogenesis of retinopathy of prematurity. Semin Neonatol 2003, 8(6):469-473.
  • [69]Maslim J, Valter K, Egensperger R, Hollander H, Stone J: Tissue oxygen during a critical developmental period controls the death and survival of photoreceptors. Invest Ophthalmol Vis Sci 1997, 38(9):1667-1677.
  文献评价指标  
  下载次数:84次 浏览次数:29次