期刊论文详细信息
BMC Genomics
Integrating Phosphoproteomics and Bioinformatics to Study Brassinosteroid-Regulated Phosphorylation Dynamics in Arabidopsis
Hsueh-Fen Juan1  Hsuan-Cheng Huang4  Hsu-Liang Hsieh5  Shiao-Yun Ko3  Chia-Wei Hu3  Chia-Lang Hsu2  Li-Ling Lin2 
[1] Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan;Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan;Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan;Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei 112, Taiwan;Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
关键词: Kinase-centered network;    Phosphorylation dynamics;    Brassinosteroids;    Bioinformatics;    Phosphoproteomics;   
Others  :  1222412
DOI  :  10.1186/s12864-015-1753-4
 received in 2014-11-02, accepted in 2015-07-06,  发布年份 2015
PDF
【 摘 要 】

Background

Protein phosphorylation regulated by plant hormone is involved in the coordination of fundamental plant development. Brassinosteroids (BRs), a group of phytohormones, regulated phosphorylation dynamics remains to be delineated in plants. In this study, we performed a mass spectrometry (MS)-based phosphoproteomics to conduct a global and dynamic phosphoproteome profiling across five time points of BR treatment in the period between 5 min and 12 h. MS coupling with phosphopeptide enrichment techniques has become the powerful tool for profiling protein phosphorylation. However, MS-based methods tend to have data consistency and coverage issues. To address these issues, bioinformatics approaches were used to complement the non-detected proteins and recover the dynamics of phosphorylation events.

Results

A total of 1104 unique phosphorylated peptides from 739 unique phosphoproteins were identified. The time-dependent gene ontology (GO) analysis shows the transition of biological processes from signaling transduction to morphogenesis and stress response. The protein-protein interaction analysis found that most of identified phosphoproteins have strongly connections with known BR signaling components. The analysis by using Motif-X was performed to identify 15 enriched motifs, 11 of which correspond to 6 known kinase families. To uncover the dynamic activities of kinases, the enriched motifs were combined with phosphorylation profiles and revealed that the substrates of casein kinase 2 and mitogen-activated protein kinase were significantly phosphorylated and dephosphorylated at initial time of BR treatment, respectively. The time-dependent kinase-substrate interaction networks were constructed and showed many substrates are the downstream of other signals, such as auxin and ABA signaling. While comparing BR responsive phosphoproteome and gene expression data, we found most of phosphorylation changes were not led by gene expression changes. Our results suggested many downstream proteins of BR signaling are induced by phosphorylation via various kinases, not through transcriptional regulation.

Conclusions

Through a large-scale dynamic profile of phosphoproteome coupled with bioinformatics, a complicated kinase-centered network related to BR-regulated growth was deciphered. The phosphoproteins and phosphosites identified in our study provide a useful dataset for revealing signaling networks of BR regulation, and also expanded our knowledge of protein phosphorylation modification in plants as well as further deal to solve the plant growth problems.

【 授权许可】

   
2015 Lin et al.

【 预 览 】
附件列表
Files Size Format View
20150821020656779.pdf 1997KB PDF download
Fig. 8. 117KB Image download
Fig. 7. 37KB Image download
Fig. 6. 57KB Image download
Fig. 5. 39KB Image download
Fig. 4. 124KB Image download
Fig. 3. 89KB Image download
Fig. 2. 45KB Image download
Fig. 1. 53KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Clouse SD, Langford M, McMorris TC. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 1996; 111(3):671-8.
  • [2]Clouse SD, Sasse JM. BRASSINOSTEROIDS: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol. 1998; 49:427-51.
  • [3]Oh MH, Wang X, Clouse SD, Huber SC. Deactivation of the Arabidopsis BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase by autophosphorylation within the glycine-rich loop. Proc Natl Acad Sci U S A. 2012; 109(1):327-32.
  • [4]Sharma P, Bhardwaj R. Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress. Acta Physiol Plant. 2007; 29(3):259-63.
  • [5]Sharma P, Bhardwaj R, Arora N, Arora HK, Kumar A. Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in Brassica juncea. Biol Plant. 2008; 52(4):767-70.
  • [6]Wang ZY, Bai MY, Oh E, Zhu JY. Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet. 2012; 46:701-24.
  • [7]Kim TW, Wang ZY. Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol. 2010; 61:681-704.
  • [8]Vert G, Chory J. Downstream nuclear events in brassinosteroid signalling. Nature. 2006; 441(7089):96-100.
  • [9]Kim TW, Michniewicz M, Bergmann DC, Wang ZY. Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature. 2012; 482(7385):419-22.
  • [10]Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-Ibanez S, Chinchilla D et al.. Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc Natl Acad Sci U S A. 2012; 109(1):303-8.
  • [11]Huang B, Chu CH, Chen SL, Juan HF, Chen YM. A proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress. Cell Mol Biol Lett. 2006; 11(2):264-78.
  • [12]Deng Z, Zhang X, Tang W, Oses-Prieto JA, Suzuki N, Gendron JM et al.. A proteomics study of brassinosteroid response in Arabidopsis. Mol Cell Proteomics. 2007; 6(12):2058-71.
  • [13]Tang W, Deng Z, Oses-Prieto JA, Suzuki N, Zhu S, Zhang X et al.. Proteomics studies of brassinosteroid signal transduction using prefractionation and two-dimensional DIGE. Mol Cell Proteomics. 2008; 7(4):728-38.
  • [14]Shigeta T, Yasuda D, Mori T, Yoshimitsu Y, Nakamura Y, Yoshida S et al.. Characterization of brassinosteroid-regulated proteins in a nuclear-enriched fraction of Arabidopsis suspension-cultured cells. Plant Physiol Biochem. 2011; 49(9):985-95.
  • [15]Nakagami H, Sugiyama N, Mochida K, Daudi A, Yoshida Y, Toyoda T et al.. Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol. 2010; 153(3):1161-74.
  • [16]Hojlund K, Bowen BP, Hwang H, Flynn CR, Madireddy L, Geetha T et al.. In vivo phosphoproteome of human skeletal muscle revealed by phosphopeptide enrichment and HPLC-ESI-MS/MS. J Proteome Res. 2009; 8(11):4954-65.
  • [17]Fila J, Honys D. Enrichment techniques employed in phosphoproteomics. Amino Acids. 2012; 43(3):1025-47.
  • [18]Salih E. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. Mass Spectrom Rev. 2005; 24(6):828-46.
  • [19]Sugiyama N, Masuda T, Shinoda K, Nakamura A, Tomita M, Ishihama Y. Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics. 2007; 6(6):1103-9.
  • [20]Hashimoto M, Komatsu S. Proteomic analysis of rice seedlings during cold stress. Proteomics. 2007; 7(8):1293-302.
  • [21]Ndimba BK, Chivasa S, Hamilton JM, Simon WJ, Slabas AR. Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures induced by fungal elicitors. Proteomics. 2003; 3(6):1047-59.
  • [22]Pang CY, Wang H, Pang Y, Xu C, Jiao Y, Qin YM et al.. Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics. 2010; 9(9):2019-33.
  • [23]Bell AW, Deutsch EW, Au CE, Kearney RE, Beavis R, Sechi S et al.. A HUPO test sample study reveals common problems in mass spectrometry-based proteomics. Nat Methods. 2009; 6(6):423-30.
  • [24]White MY, Brown DA, Sheng S, Cole RN, O’Rourke B, Van Eyk JE. Parallel proteomics to improve coverage and confidence in the partially annotated Oryctolagus cuniculus mitochondrial proteome. Mol Cell Proteomics. 2011; 10(2):M110 00429.
  • [25]de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Frohlich F et al.. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature. 2008; 455(7217):1251-4.
  • [26]Schrimpf SP, Weiss M, Reiter L, Ahrens CH, Jovanovic M, Malmstrom J et al.. Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes. PLoS Biol. 2009; 7(3): Article ID e48
  • [27]Goh WW, Lee YH, Chung M, Wong L. How advancement in biological network analysis methods empowers proteomics. Proteomics. 2012; 12(4–5):550-63.
  • [28]Sugiyama N, Nakagami H, Mochida K, Daudi A, Tomita M, Shirasu K et al.. Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol. 2008; 4:193.
  • [29]Reiland S, Messerli G, Baerenfaller K, Gerrits B, Endler A, Grossmann J et al.. Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol. 2009; 150(2):889-903.
  • [30]Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S. Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. 2002; 130(3):1319-34.
  • [31]Hu YX, Wang YX, Liu XF, Li JY. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res. 2004; 14(1):8-15.
  • [32]Xie L, Yang C, Wang X. Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. J Exp Bot. 2011; 62(13):4495-506.
  • [33]Sun Y, Fan XY, Cao DM, Tang W, He K, Zhu JY et al.. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell. 2010; 19(5):765-77.
  • [34]De Rybel B, Audenaert D, Vert G, Rozhon W, Mayerhofer J, Peelman F et al.. Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chem Biol. 2009; 16(6):594-604.
  • [35]Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C et al.. The BioGRID interaction database: 2013 update. Nucleic Acids Res. 2013; 41(Database issue):D816-23.
  • [36]Li P, Zang W, Li Y, Xu F, Wang J, Shi T. AtPID: the overall hierarchical functional protein interaction network interface and analytic platform for Arabidopsis. Nucleic Acids Res. 2011; 39(Database issue):D1130-3.
  • [37]Zulawski M, Braginets R, Schulze WX. PhosPhAt goes kinases–searchable protein kinase target information in the plant phosphorylation site database PhosPhAt. Nucleic Acids Res. 2013; 41(Database issue):D1176-84.
  • [38]Kim TW, Guan S, Sun Y, Deng Z, Tang W, Shang JX et al.. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol. 2009; 11(10):1254-60.
  • [39]Casson SA, Hetherington AM. GSK3-like kinases integrate brassinosteroid signaling and stomatal development. Sci Signal. 2012; 5(233): Article ID e30
  • [40]Khan M, Rozhon W, Bigeard J, Pflieger D, Husar S, Pitzschke A et al.. Brassinosteroid-regulated GSK3/Shaggy-like kinases phosphorylate mitogen-activated protein (MAP) kinase kinases, which control stomata development in Arabidopsis thaliana. J Biol Chem. 2013; 288(11):7519-27.
  • [41]Gampala SS, Kim TW, He JX, Tang W, Deng Z, Bai MY et al.. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev Cell. 2007; 13(2):177-89.
  • [42]Amanchy R, Periaswamy B, Mathivanan S, Reddy R, Tattikota SG, Pandey A. A curated compendium of phosphorylation motifs. Nat Biotechnol. 2007; 25(3):285-6.
  • [43]Hu J, Rho HS, Newman RH, Zhang J, Zhu H, Qian J. PhosphoNetworks: a database for human phosphorylation networks. Bioinformatics. 2014; 30(1):141-2.
  • [44]Marques-Bueno MM, Moreno-Romero J, Abas L, De Michele R, Martinez MC. A dominant negative mutant of protein kinase CK2 exhibits altered auxin responses in Arabidopsis. Plant J. 2011; 67(1):169-80.
  • [45]Riera M, Figueras M, Lopez C, Goday A, Pages M. Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proc Natl Acad Sci U S A. 2004; 101(26):9879-84.
  • [46]Zhang S, Cai Z, Wang X. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc Natl Acad Sci U S A. 2009; 106(11):4543-8.
  • [47]Xue L, Wang P, Wang L, Renzi E, Radivojac P, Tang H et al.. Quantitative measurement of phosphoproteome response to osmotic stress in arabidopsis based on Library-Assisted eXtracted Ion Chromatogram (LAXIC). Mol Cell Proteomics. 2013; 12(8):2354-69.
  • [48]Witthoft J, Caesar K, Elgass K, Huppenberger P, Kilian J, Schleifenbaum F et al.. The activation of the Arabidopsis P-ATPase 1 by the brassinosteroid receptor BRI1 is independent of threonine 948 phosphorylation. Plant Signal Behav. 2011; 6(7):1063-6.
  • [49]Yamagami A, Nakazawa M, Matsui M, Tujimoto M, Sakuta M, Asami T et al.. Chemical genetics reveal the novel transmembrane protein BIL4, which mediates plant cell elongation in brassinosteroid signaling. Biosci Biotechnol Biochem. 2009; 73(2):415-21.
  • [50]Abel S, Burstenbinder K, Muller J. The emerging function of IQD proteins as scaffolds in cellular signaling and trafficking. Plant Signal Behav. 2013; 8(6): Article ID e24369
  • [51]Wang P, Xue L, Batelli G, Lee S, Hou YJ, Van Oosten MJ et al.. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc Natl Acad Sci U S A. 2013; 110(27):11205-10.
  • [52]Clouse SD. Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell. 2011; 23(4):1219-30.
  • [53]Wang X, Bian Y, Cheng K, Gu LF, Ye M, Zou H et al.. A large-scale protein phosphorylation analysis reveals novel phosphorylation motifs and phosphoregulatory networks in Arabidopsis. J Proteomics. 2013; 78:486-98.
  • [54]Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC et al.. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci Signal. 2013; 6(270):rs8.
  • [55]Engelsberger WR, Schulze WX. Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. Plant J. 2012; 69(6):978-95.
  • [56]Mayank P, Grossman J, Wuest S, Boisson-Dernier A, Roschitzki B, Nanni P et al.. Characterization of the phosphoproteome of mature Arabidopsis pollen. Plant J. 2012; 72(1):89-101.
  • [57]Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R et al.. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell. 2008; 31(3):438-48.
  • [58]Schulze B, Mentzel T, Jehle AK, Mueller K, Beeler S, Boller T et al.. Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J Biol Chem. 2010; 285(13):9444-51.
  • [59]Santoni V. Plant plasma membrane protein extraction and solubilization for proteomic analysis. Methods Mol Biol. 2007; 355:93-109.
  • [60]Sreeramulu S, Mostizky Y, Sunitha S, Shani E, Nahum H, Salomon D et al.. BSKs are partially redundant positive regulators of brassinosteroid signaling in Arabidopsis. Plant J. 2013; 74(6):905-19.
  • [61]Yu X, Li L, Li L, Guo M, Chory J, Yin Y. Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc Natl Acad Sci U S A. 2008; 105(21):7618-23.
  • [62]Reinhold H, Soyk S, Simkova K, Hostettler C, Marafino J, Mainiero S et al.. Beta-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell. 2011; 23(4):1391-403.
  • [63]Kong X, Pan J, Cai G, Li D. Recent insights into brassinosteroid signaling in plants: its dual control of plant immunity and stomatal development. Mol Plant. 2012; 5(6):1179-81.
  • [64]Kubes M, Yang H, Richter GL, Cheng Y, Mlodzinska E, Wang X et al.. The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. Plant J. 2012; 69(4):640-54.
  • [65]Kulik A, Wawer I, Krzywinska E, Bucholc M, Dobrowolska G. SnRK2 protein kinases--key regulators of plant response to abiotic stresses. OMICS. 2011; 15(12):859-72.
  • [66]Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007; 2(8):1896-906.
  • [67]Ravichandran A, Sugiyama N, Tomita M, Swarup S, Ishihama Y. Ser/Thr/Tyr phosphoproteome analysis of pathogenic and non-pathogenic Pseudomonas species. Proteomics. 2009; 9(10):2764-75.
  • [68]Kyono Y, Sugiyama N, Tomita M, Ishihama Y. Chemical dephosphorylation for identification of multiply phosphorylated peptides and phosphorylation site determination. Rapid Commun Mass Spectrom. 2010; 24(15):2277-82.
  • [69]Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008; 26(12):1367-72.
  • [70]Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011; 10(4):1794-805.
  • [71]Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods. 2007; 4(3):207-14.
  • [72]Samakovli D, Margaritopoulou T, Prassinos C, Milioni D, Hatzopoulos P. Brassinosteroid nuclear signaling recruits HSP90 activity. New Phytol. 2014; 203(3):743-57.
  • [73]Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P et al.. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006; 127(3):635-48.
  • [74]Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011; 27(3):431-2.
  • [75]Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R et al.. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 2012; 40(Database issue):D1202-10.
  • [76]Wu HM, Tien YJ, Chen CH. GAP: a graphical environment for matrix visualization and cluster analysis. Comput Stat Data An. 2010;54(3):767–78.
  • [77]Schwartz D, Gygi SP. An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nat Biotechnol. 2005; 23(11):1391-8.
  文献评价指标  
  下载次数:103次 浏览次数:26次