期刊论文详细信息
BMC Research Notes
Distribution and prediction of catalytic domains in 2-oxoglutarate dependent dioxygenases
Siddhartha Kundu1 
[1] Department of Biochemistry, Army College of Medical Sciences, Delhi Cantt., New Delhi, 110010, India
关键词: Dioxygenase;    Ferryl;    Facial triad;    Hidden Markov Model;   
Others  :  1165997
DOI  :  10.1186/1756-0500-5-410
 received in 2012-02-15, accepted in 2012-06-29,  发布年份 2012
PDF
【 摘 要 】

Background

The 2-oxoglutarate dependent superfamily is a diverse group of non-haem dioxygenases, and is present in prokaryotes, eukaryotes, and archaea. The enzymes differ in substrate preference and reaction chemistry, a factor that precludes their classification by homology studies and electronic annotation schemes alone. In this work, I propose and explore the rationale of using substrates to classify structurally similar alpha-ketoglutarate dependent enzymes.

Findings

Differential catalysis in phylogenetic clades of 2-OG dependent enzymes, is determined by the interactions of a subset of active-site amino acids. Identifying these with existing computational methods is challenging and not feasible for all proteins. A clustering protocol based on validated mechanisms of catalysis of known molecules, in tandem with group specific hidden markov model profiles is able to differentiate and sequester these enzymes. Access to this repository is by a web server that compares user defined unknown sequences to these pre-defined profiles and outputs a list of predicted catalytic domains. The server is free and is accessible at the following URL ( http://comp-biol.theacms.in/H2OGpred.html webcite).

Conclusions

The proposed stratification is a novel attempt at classifying and predicting 2-oxoglutarate dependent function. In addition, the server will provide researchers with a tool to compare their data to a comprehensive list of HMM profiles of catalytic domains. This work, will aid efforts by investigators to screen and characterize putative 2-OG dependent sequences. The profile database will be updated at regular intervals.

【 授权许可】

   
2012 Kundu; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150416035548224.pdf 1289KB PDF download
Figure 2. 118KB Image download
Figure 1. 68KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Koehntop KD, Emerson JP, Que L: The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II) enzymes. Biol Inorg Chem 2005, 10(Suppl 2):87-93.
  • [2]Price JC, Barr EW, Tirupati B, Bollinger JM, Krebs C: The first direct characterization of a high-valent iron intermediate in the reaction of an alpha-ketoglutarate-dependent dioxygenase: a high-spin FeIV complex in taurine/alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli. Biochemistry 2003, 42(Suppl 24):7497-7508.
  • [3]Bredebach M, Matern U, Martens S: Three 2-oxoglutarate-dependent dioxygenases activities of Equisetum arvense L. forming flavone and flavonol from (2S)-naringenin. Phytochemistry 2011, 72(Suppl 7):557-563.
  • [4]Busby RW, Townsend CA: A single monomeric iron center in clavaminate synthase catalyzes three nonsuccessive oxidative transformations. Bioorg Med Chem 1996, 4(Suppl 7):1059-1064.
  • [5]You Z, Omura S, Ikeda H, Cane DE: Pentalenolactone biosynthesis. Molecular cloning and assignment of biochemical function to PtlH, a non-heme iron dioxygenase of Streptomyces avermitilis. J Am Chem Soc 2006, 128(Suppl 20):6566-6567.
  • [6]Topf M, Sandala GM, Smith DM, Schofield CJ, Easton CJ, Radom L: The unusual bifunctional catalysis of epimerization and desaturation by carbapenem synthase. J Am Chem Soc 2004, 126(Suppl 32):9932-9933.
  • [7]Vaillancourt FH, Vosburg DA, Walsh CT: Dichlorination and bromination of a threonyl-S-carrier protein by the non-heme Fe(II) halogenase SyrB2. Chembiochem 2006, 7(Suppl 5):748-752.
  • [8]Grzyska PK, Ryle MJ, Monterosso GR, Liu J, Ballou DP, Hausinger RP: Steady-state and transient kinetic analyses of taurine/alpha-ketoglutarate dioxygenase: effects of oxygen concentration, alternative sulfonates, and active-site variants on the FeIV-oxo intermediate. Biochemistry 2005, 44(Suppl 10):3845-3855.
  • [9]Chen YH, Comeaux LM, Eyles SJ, Knapp MJ: Auto-hydroxylation of FIH-1: an Fe(ii), alpha-ketoglutarate-dependent human hypoxia sensor. Chem Commun (Camb) 2008, 39:4768-4770.
  • [10]Falnes PØ, Johansen RF, Seeberg E: AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 2002, 419(Suppl 6903):178-182.
  • [11]Bursy J, Pierik AJ, Pica N, Bremer E: Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. J Biol Chem 2007, 282(Suppl 43):31147-31155.
  • [12]Wehner KA, Schütz S, Sarnow P: OGFOD1, a novel modulator of eukaryotic translation initiation factor 2alpha phosphorylation and the cellular response to stress. Mol Cell Biol. 2010, 30(Suppl 8):2006-2016.
  • [13]Jansen GA, Mihalik SJ, Watkins PA, Moser HW, Jakobs C, Denis S, Wanders RJ: Phytanoyl-CoA hydroxylase is present in human liver, located in peroxisomes, and deficient in Zellweger syndrome: direct, unequivocal evidence for the new, revised pathway of phytanic acid alpha-oxidation in humans. Biochem Biophys Res Commun 1996, 229(Suppl 1):205-210.
  • [14]Hedden P, Thomas SG: Gibberellin biosynthesis and its regulation. Biochem J 2012, 444(Suppl 1):11-25.
  • [15]Saari RE, Hausinger RP: Ascorbic acid-dependent turnover and reactivation of 2,4-dichlorophenoxyacetic acid/alpha-ketoglutarate dioxygenase using thiophenoxyacetic acid. Biochemistry 1998, 37(Suppl 9):3035-3042.
  • [16]Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning MD, Durbin R, Falquet L, Fleischmann W, Gouzy J, Hermjakob H, Hulo N, Jonassen I, Kahn D, Kanapin A, Karavidopoulou Y, Lopez R, Marx B, Mulder NJ, Oinn TM, Pagni M, Servant F, Sigrist CJ, Zdobnov EM: InterPro Consortium. InterPro--an integrated documentation resource for protein families, domains and functional sites. Bioinformatics 2000, 16(12):1145-1150.
  • [17]Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R: Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res 1998, 26(1):320-322.
  • [18]Letunic I, Goodstadt L, Dickens NJ, Doerks T, Schultz J, Mott R, Ciccarelli F, Copley RR, Ponting CP, Bork P: Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res 2002, 30(1):242-244.
  • [19]Gough J, Karplus K, Hughey R, Chothia C: Assignment of Homology to Genome Sequences using a Library of Hidden Markov Models that Represent all Proteins of Known Structure. J Mol Biol 2001, 313(4):903-919.
  • [20]Lees J, Yeats C, Redfern O, Clegg A, Orengo C: Gene3D: merging structure and function for a Thousand genomes. NAR 2009, 38:D296-D300.
  • [21]Sigrist CJ, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, Hulo N: PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res 2010, 38:D161-D166.
  • [22]The RCSB PDB server  . http://www.rcsb.org/pdb/ webcite
  • [23]Holm L, Park J: DaliLite workbench for protein structure comparison. Bioinformatics 2000, 16(6):566-567.
  • [24]Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 1997, 18:2714-2723.
  • [25]Gille C, Frommel C: STRAP: editor for STRuctural Alignments of Proteins. Bioinformatics 2001, 17(4):377-378.
  • [26]The HMMER-3.0 site  . http://hmmer.janelia.org webcite
  • [27]The UniProtKB server  . http://www.uniprot.org/ webcite
  • [28]Hausinger RP: FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol. 2004, 39(1):21-68.
  • [29]Clifton IJ, McDonough MA, Ehrismann D, Kershaw NJ, Granatino N, Schofield CJ, et al.: Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins. J Inorg Biochem 2006, 100(4):644-669.
  • [30]Yang CG, Yi C, Duguid EM, Sullivan CT, Jian X, Rice PA, He C: Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. Nature 2008, 452(7190):961-965.
  • [31]Sundheim O, Vågbø CB, Bjørås M, Sousa MM, Talstad V, Aas PA, Drabløs F, Krokan HE, Tainer JA, Slupphaug G: Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage. EMBO J 2006, 25(14):3389-3397.
  • [32]Han Z, Niu T, Chang J, Lei X, Zhao M, Wang Q, Cheng W, Wang J, Feng Y, Chai J: Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature 2010, 464(7292):1205-1209.
  • [33]Westbye MP, Feyzi E, Aas PA, Vågbø CB, Talstad VA, Kavli B, Hagen L, Sundheim O, Akbari M, Liabakk NB, Slupphaug G, Otterlei M, Krokan H: Human AlkB homolog 1 is a mitochondrial protein that demethylates 3-methylcytosine in DNA and RNA. J Biol Chem 2008, 283(36):25046-25056.
  • [34]Holland PJ, Hollis T: Structural and mutational analysis of Escherichia coli AlkB provides insight into substrate specificity and DNA damage searching. PLoS One 2010, 5(1):e8680.
  • [35]van den Born E, Bekkelund A, Moen MN, Omelchenko MV, Klungland A, Falnes PØ: Bioinformatics and functional analysis define four distinct groups of AlkB DNA-dioxygenases in bacteria. Nucleic Acids Res 2009, 37(21):7124-7136.
  • [36]Zhang Z, Ren J, Stammers DK, Baldwin JE, Harlos K, Schofield CJ: Structural origins of the selectivity of the trifunctional oxygenase clavaminic acid synthase. Nat Struct Biol 2000, 7(Suppl 2):127-133.
  • [37]Helmetag V, Samel SA, Thomas MG, Marahiel MA, Essen LO: Structural basis for the erythro-stereospecificity of the L-arginine oxygenase VioC in viomycin biosynthesis. FEBS J. 2009, 276(13):3669-3682.
  • [38]Busby RW, Chang MD, Busby RC, Wimp J, Townsend CA: Expression and purification of two isozymes of clavaminate synthase and initial characterization of the iron binding site. General error analysis in polymerase chain reaction amplification. J Biol Chem 1995, 270(9):4262-4269.
  • [39]Janc JW, Egan LA, Townsend CA: Purification and characterization of clavaminate synthase from Streptomyces antibioticus. A multifunctional enzyme of clavam biosynthesis. J Biol Chem 1995, 270(10):5399-5404.
  • [40]Hewitson KS, Holmes SL, Ehrismann D, Hardy AP, Chowdhury R, Schofield CJ, McDonough MA: Evidence that two enzyme-derived histidine ligands are sufficient for iron binding and catalysis by factor inhibiting HIF (FIH). J Biol Chem 2008, 283(Suppl 38):25971-25978.
  • [41]Strieker M, Kopp F, Mahlert C, Essen L-O, Marahiel MA: Mechanistic and structural basis of stereospecific Cbeta-hydroxylation in calcium-dependent antibiotic, a daptomycin-type lipopeptide. ACS Chem Biol 2007, 2:187-196.
  • [42]Krojer T, Kochan G, Pilka E, Hozjan V, Allerston CK, Bray J, Muniz JR, Chaikuad A, Gileadi O, Kavanagh K, von Delft F, Bountra C, Arrowsmith CH, Weigelt J, Edwards A, Oppermann U: Crystal structure of human aspartate beta-hydroxylase isoform a.  . To be Published
  • [43]Wang Q, Vandusen WJ, Petroski CJ, Garsky VM, Stern AM, Friedman PA: Bovine liver aspartyl beta-hydroxylase. Purification and characterization. J Biol Chem 1991, 266:14004-14010.
  • [44]Dinchuk JE, Henderson NL, Burn TC, Huber R, Ho SP, Link J, O'Neil KT, Focht RJ, Scully MS, Hollis JM, Hollis GF, Friedman PA: Aspartyl beta -hydroxylase (Asph) and an evolutionarily conserved isoform of Asph missing the catalytic domain share exons with junctin. J Biol Chem 2000, 275:39543-39554.
  • [45]Silbermann E, Moskal P, Bowling N, Tong M, de la Monte SM: Role of aspartyl-(asparaginyl)-β-hydroxylase mediated notch signaling in cerebellar development and function. Behav Brain Funct 2010, 6:68. BioMed Central Full Text
  • [46]Gronke RS, VanDusen WJ, Garsky VM, Jacobs JW, Sardana MK, Stern AM, Friedman PA: Aspartyl beta-hydroxylase: in vitro hydroxylation of a synthetic peptide based on the structure of the first growth factor-like domain of human factor IX. Proc Natl Acad Sci U S A. 1989, 86(10):3609-3613.
  • [47]Stenflo J, Holme E, Lindstedt S, Chandramouli N, Huang LH, Tam JP, Merrifield RB: Hydroxylation of aspartic acid in domains homologous to the epidermal growth factor precursor is catalyzed by a 2-oxoglutarate-dependent dioxygenase. Proc Natl Acad Sci U S A 1989, 86(Suppl 2):444-447.
  • [48]Neary JM, Powell A, Gordon L, Milne C, Flett F, Wilkinson B, Smith CP, Micklefield J: An asparagine oxygenase (AsnO) and a 3-ydroxyasparaginyl phosphotransferase (HasP) are involved in the biosynthesis of calcium-dependent lipopeptide antibiotics. Microbiology 2007, 153(Pt 3):768-776.
  • [49]Blasiak LC, Vaillancourt FH, Walsh CT, Drennan CL: Crystal structure of the non- haem iron halogenase SyrB2 in syringomycin biosynthesis. Nature 2006, 440(7082):368-371.
  • [50]Wong C, Fujimori DG, Walsh CT, Drennan CL: Structural analysis of an open active site conformation of nonheme iron halogenase CytC3. J Am Chem Soc. 2009, 131(13):4872-4879.
  • [51]Vaillancourt FH, Yeh E, Vosburg DA, O'Connor SE, Walsh CT: Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis. Nature 2005, 436(7054):1191-1194.
  • [52]Vaillancourt FH, Yin J, Walsh CT: SyrB2 in syringomycin E biosynthesis is a nonheme FeII alpha-ketoglutarate- and O2-dependent halogenase. Proc Natl Acad Sci U S A. 2005, 102(29):10111-10116.
  • [53]Mantri M, Krojer T, Bagg EA, Webby CJ, Butler DS, Kochan G, Kavanagh KL, Oppermann U, McDonough MA, Schofield CJ: Crystal structure of the 2-oxoglutarate- and Fe(II)-dependent lysyl hydroxylase JMJD6. J Mol Biol 2010, 401:211-222.
  • [54]Valtavaara M, Papponen H, Pirttila AM, Hiltunen K, Helander H, Myllylae R: Cloning and characterization of a novel human lysyl hydroxylase isoform highly expressed in pancreas and muscle. J Biol Chem 1997, 272:6831-6834.
  • [55]Armstrong LC, Last JA: Rat lysyl hydroxylase: molecular cloning, mRNA distribution and expression in a baculovirus system. Biochim Biophys Acta 1995, 1264:93-102.
  • [56]Mercer DK, Nicol PF, Wright MC: Robins SP Cloning and characterisation of lysyl hydroxylase isoforms 2 and 3 isolated from rat hepatic stellate cells. Biochem Biophys Res Commun 2003, 307:803-809.
  • [57]Ruotsalainen H, Sipila L, Kerkela E, Pospiech H, Myllylae R: Characterization of cDNAs for mouse lysyl hydroxylase 1, 2 and 3, their phylogenetic analysis and tissue-specific expression in the mouse. Matrix Biol 1999, 18:325-329.
  • [58]Norman KR, Moerman DG: The let-268 locus of Caenorhabditis elegans encodes a procollagen lysyl hydroxylase that is essential for type IV collagen secretion. Dev. Biol. 2000, 227:690-705.
  • [59]Vaz FM, Ofman R, Westinga K, Back JW, Wanders RJA: Molecular and biochemical characterization of rat epsilon-N-trimethyllysine hydroxylase, the first enzyme of carnitine biosynthesis. J Biol Chem 2001, 276:33512-33517.
  • [60]Passoja K, Rautavuoma K, Ala-Kokko L, Kosonen T, Kivirikko KI: Cloning and characterization of a third human lysyl hydroxylase isoform. Proc Natl Acad Sci USA 1998, 95:10482-10486.
  • [61]Schneider VA, Granato M: Genomic structure and embryonic expression of zebrafish lysyl hydroxylase 1 and lysyl hydroxylase 2. Matrix Biol 2007, 26:12-19.
  • [62]Schneider VA, Granato M: The myotomal diwanka (lh3) glycosyltransferase and type XVIII collagen are critical for motor growth cone migration. Neuron 2006, 50:683-695.
  • [63]Rautavuoma K, Takaluoma K, Passoja K, Pirskanen A, Kvist AP, Kivirikko KI, Myllyharju J: Characterization of three fragments that constitute the monomers of the human lysyl hydroxylase isoenzymes 1–3. The 30-kDa N-terminal fragment is not required for lysyl hydroxylase activity. J Biol Chem 2002, 277(25):23084-23091.
  • [64]Clifton IJ, Hsueh LC, Baldwin JE, Harlos K, Schofield CJ: Structure of proline 3-hydroxylase. Evolution of the family of 2-oxoglutarate dependent oxygenases. Eur J Biochem 2001, 268:6625-6636.
  • [65]Fernandes RJ, Farnand AW, Traeger GR, Weis MA, Eyre DR: A role for prolyl 3-hydroxylase 2 in post-translational modification of fibril-forming collagens. J Biol Chem 2011, 286(35):30662-30669.
  • [66]Risteli J, Tryggvason K, Kivirikko KI: Prolyl 3-hydroxylase: partial characterization of the enzyme from rat kidney cortex. Eur J Biochem 1977, 73(2):485-492.
  • [67]Wassenhove-McCarthy DJ, McCarthy KJ: Molecular characterization of a novel basement membrane-associated proteoglycan, leprecan. J Biol Chem 1999, 274:25004-25017.
  • [68]Jaernum S, Kjellman C, Darabi A, Nilsson I, Edvardsen K, Aaman P: LEPREL1, a novel ER and Golgi resident member of the Leprecan family. Biochem Biophys Res Commun 2004, 317:342-351.
  • [69]Kaul SC, Sugihara T, Yoshida A, Nomura H, Wadhwa R: Gros1, a potential growth suppressor on chromosome 1: its identity to basement membrane-associated proteoglycan, leprecan. Oncogene 2000, 19:3576-3583.
  • [70]Vranka JA, Sakai LY, Bachinger HP: Prolyl 3-hydroxylase 1, enzyme characterization and identification of a novel family of enzymes. J Biol Chem 2004, 279:23615-23621.
  • [71]Vranka J, Stadler HS, Bächinger HP: Expression of prolyl 3-hydroxylase genes in embryonic and adult mouse tissues. Cell Struct Funct 2009, 34(2):97-104.
  • [72]Tiainen P, Pasanen A, Sormunen R, Myllyharju J: Characterization of recombinant human prolyl 3-hydroxylase isoenzyme 2, an enzyme modifying the basement membrane collagen IV. J Biol Chem 2008, 283(28):19432-19439.
  • [73]Koski MK, Hieta R, Hirsilä M, Rönkä A, Myllyharju J, Wierenga RK: The crystal structure of an algal prolyl 4-hydroxylase complexed with a proline-rich peptide reveals a novel buried tripeptide binding motif. J Biol Chem 2009, 284(37):25290-25301.
  • [74]Culpepper MA, Scott EE, Limburg J: Crystal structure of prolyl 4-hydroxylase from Bacillus anthracis. Biochemistry 2010, 49(1):124-133.
  • [75]Helaakoski T, Veijola J, Vuori K, Rehn M, Chow LT, Taillon-Miller P, Kivirikko KI, Pihlajaniemi T: Structure and expression of the human gene for the alpha subunit of prolyl 4-hydroxylase. The two alternatively spliced types of mRNA correspond to two homologous exons the sequences of which are expressed in a variety of tissues. J Biol Chem 1994, 269:27847-27854.
  • [76]Annunen P, Helaakoski T, Myllyharju J, Veijola J, Pihlajaniemi T, Kivirikko KI: Cloning of the human prolyl 4-hydroxylase alpha subunit isoform alpha(II) and characterization of the type II enzyme tetramer. The alpha(I) and alpha(II) subunits do not form a mixed alpha(I)alpha(II)beta2 tetramer. J Biol Chem 1997, 272:17342-17348.
  • [77]Nokelainen M, Nissi R, Kukkola L, Helaakoski T, Myllyharju J: Characterization of the human and mouse genes for the alpha subunit of type II prolyl 4-hydroxylase. Identification of a previously unknown alternatively spliced exon and its expression in various tissues. Eur J Biochem 2001, 268:5300-5309.
  • [78]Hieta R, Myllyharju J: Cloning and characterization of a low molecular weight prolyl 4-hydroxylase from Arabidopsis thaliana. Effective hydroxylation of proline-rich, collagen-like, and hypoxia-inducible transcription factor alpha-like peptides. J Biol Chem 2002, 277(26):23965-23971.
  • [79]Tiainen P, Myllyharju J, Koivunen P: Characterization of a second Arabidopsis thaliana prolyl 4-hydroxylase with distinct substrate specificity. J Biol Chem 2005, 280(2):1142-1148.
  • [80]Eriksson M, Myllyharju J, Tu H, Hellman M, Kivirikko KI: Evidence for 4-hydroxyproline in viral proteins. Characterization of a viral prolyl 4-hydroxylase and its peptide substrates. J Biol Chem 22131, 274(32):22131-22134.
  • [81]Yuasa K, Toyooka K, Fukuda H, Matsuoka K: Membrane-anchored prolyl hydroxylase with an export signal from the endoplasmic reticulum. Plant J 2005, 41:81-94.
  • [82]Kukkola L, Koivunen P, Pakkanen O, Page AP, Myllyharju J: Collagen prolyl 4-hydroxylase tetramers and dimers show identical decreases in Km values for peptide substrates with increasing chain length: mutation of one of the two catalytic sites in the tetramer inactivates the enzyme by more than half. J Biol Chem 2004, 279(18):18656-18661.
  • [83]Drake EJ, Gulick AM: Three-dimensional structures of Pseudomonas aeruginosa PvcA and PvcB, two proteins involved in the synthesis of 2-isocyano-6,7-dihydroxycoumarin. J Mol Biol 2008, 384(1):193-205.
  • [84]Valegård K, van Scheltinga AC, Lloyd MD, Hara T, Ramaswamy S, Perrakis A, Thompson A, Lee HJ, Baldwin JE, Schofield CJ, Hajdu J, Andersson I: Structure of a cephalosporin synthase. Nature 1998, 394(6695):805-809.
  • [85]Coque JJR, Martin JF, Liras P: Characterization and expression in Streptomyces lividans of cefD and cefE genes from Nocardia lactamdurans: the organization of the cephamycin gene cluster differs from that in Streptomyces clavuligerus. Mol Gen Genet 1993, 236:453-458.
  • [86]Samson SM, Dotzlaf JE, Slisz ML, Becker GW, van Frank RM, Veal LE, Yeh WK, Miller JR, Queener SW, Ingolia TD: Cloning and expression of the fungal expandase/hydroxylase gene involved in cephalosporin biosynthesis. Biotechnology (N.Y.) 1987, 5:1207-1214.
  • [87]Baker BJ, Dotzlaf JE, Yeh WK: Deacetoxycephalosporin C hydroxylase of Streptomyces clavuligerus. Purification, characterization, bifunctionality, and evolutionary implication. J Biol Chem 1991, 266(8):5087-5093.
  • [88]Coque J, Enguita FJ, Cardoza RE, Martin JF, Liras P: Characterization of the cefF gene of Nocardia lactamdurans encoding a 3'-methylcephem hydroxylase different from the 7-cephem hydroxylase. Appl Microbiol Biotechnol 1996, 44:605-609.
  • [89]Lloyd MD, Lipscomb SJ, Hewitson KS, Hensgens CM, Baldwin JE, Schofield CJ: Controlling the substrate selectivity of deacetoxycephalosporin/deacetylcephalosporin C synthase. J Biol Chem 2004, 279(15):15420-15426.
  • [90]Wilmouth RC, Turnbull JJ, Welford RW, Clifton IJ, Prescott AG, Schofield CJ: Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure 2002, 10(1):93-103.
  • [91]Clifton IJ, Doan LX, Sleeman MC, Topf M, Suzuki H, Wilmouth RC, Schofield CJ: Crystal structure of carbapenem synthase (CarC). J Biol Chem 2003, 278:20843-20850.
  • [92]Martens S, Forkmann G, Matern U, Lukacin R: Cloning of parsley flavone synthase I. Phytochemistry 2001, 58:43-46.
  • [93]Martens S, Forkmann G, Britsch L, Wellmann F, Matern U, Lukacin R: Divergent evolution of flavonoid 2-oxoglutarate-dependent dioxygenases in parsley. FEBS Lett 2003, 544:93-98.
  • [94]Wellmann F, Lukacin R, Moriguchi T, Britsch L, Schiltz E, Matern U: Functional expression and mutational analysis of flavonol synthase from Citrus unshiu. Eur J Biochem 2002, 269:4134-4142.
  • [95]Owens DK, Crosby KC, Runac J, Howard BA, Winkel BS: Biochemical and genetic characterization of Arabidopsis flavanone 3beta-hydroxylase. Plant Physiol Biochem 2008, 46(10):833-843.
  • [96]Chua CS, Biermann D, Goo KS, Sim TS: Elucidation of active site residues of Arabidopsis thaliana flavonol synthase provides a molecular platform for engineering flavonols. Phytochemistry 2008, 69(1):66-75.
  • [97]Britsch L, Dedio J, Saedler H, Forkmann G: Molecular characterization of flavanone 3 beta-hydroxylases. Consensus sequence, comparison with related enzymes and the role of conserved histidine residues. Eur J Biochem 1993, 217:745-754.
  • [98]Holton TA, Brugliera F, Tanaka Y: Cloning and expression of flavonol synthase from Petunia hybrida. Plant J 1993, 4:1003-1010.
  • [99]Halbwirth H, Fischer TC, Schlangen K, Rademacher W, Schleifer K-J, Forkmann G, Stich K: Screening for inhibitors of 2-oxoglutarate-dependent dioxygenases: Flavanone 3 beta-hydroxylase and flavonol synthase. Plant Sci 2006, 171:194-205.
  • [100]Lin GZ, Lian YJ, Ryu JH, Sung MK, Park JS, Park HJ, Park BK, Shin JS, Lee MS, Cheon CI: Expression and purification of His-tagged flavonol synthase of Camellia sinensis from Escherichia coli. Protein Expr Purif 2007, 55(2):287-292.
  • [101]Xu F, Li L, Zhang W, Cheng H, Sun N, Cheng S, Wang Y: Isolation, characterization, and function analysis of a flavonol synthase gene from Ginkgo biloba. Mol Biol Rep 2012, 39(3):2285-2296.
  • [102]Takahashi R, Githiri SM, Hatayama K, Dubouzet EG, Shimada N, Aoki T, Ayabe S, Iwashina T, Toda K, Matsumura H: A single-base deletion in soybean flavonol synthase gene is associated with magenta flower color. Plant Mol Biol 2007, 63:125-135.
  • [103]Fujita A, Goto-Yamamoto N, Aramaki I, Hashizume K: Organ-specific transcription of putative flavonol synthase genes of grapevine and effects of plant hormones and shading on flavonol biosynthesis in grape berry skins. Biosci Biotechnol Biochem 2006, 70:632-638.
  • [104]Xu F, Cheng H, Cai R, Li LL, Chang J, Zhu J, Zhang FX, Chen LJ, Wang Y, Cheng SH, Cheng SY: Molecular Cloning and Function Analysis of an Anthocyanidin Synthase Gene from Ginkgo biloba, and Its Expression in Abiotic Stress Responses. Mol Cells 2008, 26:536-547.
  • [105]Turnbull JJ, Nakajima J, Welford RW, Yamazaki M, Saito K, Schofield CJ: Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis: anthocyanidin synthase, flavonol synthase, and flavanone 3beta-hydroxylase. J Biol Chem 2004, 279(2):1206-1216.
  • [106]Reuter K, Pittelkow M, Bursy J, Heine A, Craan T, Bremer E: Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II) and 2-oxoglutarate-dependent dioxygenase EctD. PLoS One 2010, 5(5):e10647.
  • [107]Prabhu J, Schauwecker F, Grammel N, Keller U, Bernhard M: Functional expression of the ectoine hydroxylase gene (thpD) from Streptomyces chrysomallus in Halomonas elongata. Appl Environ Microbiol 2004, 70:3130-3132.
  • [108]Bursy J, Kuhlmann AU, Pittelkow M, Hartmann H, Jebbar M, Pierik AJ, Bremer E: Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol. 2008, 74(23):7286-7296.
  • [109]Garcia-Estepa R, Argandona M, Reina-Bueno M, Capote N, Iglesias-Guerra F, Nieto JJ, Vargas C: The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens. J Bacteriol 2006, 188:3774-3784.
  • [110]Tars K, Rumnieks J, Zeltins A, Kazaks A, Kotelovica S, Leonciks A, Sharipo J, Viksna A, Kuka J, Liepinsh E, Dambrova M: Crystal structure of human gamma-butyrobetaine hydroxylase. Biochem Biophys Res Commun. 2010, 398(4):634-639.
  • [111]Rueetschi U, Nordin I, Odelhoeg B, Joernvall H, Lindstedt S: Gamma-butyrobetaine hydroxylase. Structural characterization of the Pseudomonas enzyme. Eur J Biochem 1993, 213:1075-1080.
  • [112]Wen G, Kühne H, Rauer C, Ringseis R, Eder K: Mouse γ-butyrobetaine dioxygenase is regulated by peroxisome proliferator-activated receptor α through a PPRE located in the proximal promoter. Biochem Pharmacol 2011, 82(2):175-183.
  • [113]Kondo A, Blanchard JS, Englard S: Purification and properties of calf liver gamma-butyrobetaine hydroxylase. Arch Biochem Biophys. 1981, 212(2):338-346.
  • [114]Leung IK, Krojer TJ, Kochan GT, Henry L, von Delft F, Claridge TD, Oppermann U, McDonough MA, Schofield CJ: Structural and mechanistic studies on γ-butyrobetaine hydroxylase. Chem Biol. 2010, 17(12):1316-1324.
  • [115]Williams J, Phillips AL, Gaskin P, Hedden P: Function and substrate specificity of the gibberellin 3beta-hydroxylase encoded by the Arabidopsis GA4 gene. Plant Physiol 1998, 117:559-563.
  • [116]Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M: A mutant gibberellin-synthesis gene in rice. Nature 2002, 416:701-702.
  • [117]Spielmeyer W, Ellis MH, Chandler PM: Semidwarf (sd-1), 'green revolution' rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 2002, 99:9043-9048.
  • [118]Xu Y-L, Li L, Wu K, Peeters AJM, Gage DA, Zeevaart JAD: The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression. Proc Natl Acad Sci USA 1995, 92:6640-6644.
  • [119]Phillips AL, Ward DA, Uknes S, Appleford NEJ, Lange T, Huttly AK, Gaskin P, Graebe JE, Hedden P: Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol 1995, 108:1049-1057.
  • [120]Thomas SG, Phillips AL, Hedden P: Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA 1999, 96:4698-4703.
  • [121]Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JAD, Amasino RM: Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 2003, 15:151-163.
  • [122]Lester DR, Ross JJ, Smith JJ, Elliott RC, Reid JB: Gibberellin 2-oxidation and the SLN gene of Pisum sativum. Plant J 1999, 19:65-73.
  • [123]Lester DR, Phillips A, Hedden P, Andersson I: Purification and kinetic studies of recombinant gibberellin dioxygenases. BMC Plant Biol. 2005, 5:19-19. BioMed Central Full Text
  • [124]Curaba J, Moritz T, Blervaque R, Parcy F, Raz V, Herzog M, Vachon G: AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiol 2004, 136:3660-3669.
  • [125]Toyomasu T, Kawaide H, Sekimoto H, von Numers C, Phillips AL, Hedden P, Kamiya Y: Cloning and characterization of a cDNA encoding gibberellin 20-oxidase from rice (Oryza sativa) seedlings. Physiol Plantarum 1997, 99:111-118.
  • [126]Mitchum MG, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, Tabata S, Kamiya Y, Sun TP: Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J 2006, 45(5):804-818.
  • [127]Appleford NE, Evans DJ, Lenton JR, Gaskin P, Croker SJ, Devos KM, Phillips AL, Hedden P: Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta 2006, 223:568-582.
  • [128]Bou-Torrent J, Martínez-García JF, García-Martínez JL, Prat S: Gibberellin A1 metabolism contributes to the control of photoperiod-mediated tuberization in potato. PLoS One 2011, 6(9):e24458.
  • [129]Kloosterman B, Navarro C, Bijsterbosch G, Lange T, Prat S, Visser RGF, Bachem CWB: StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant J 2007.
  • [130]Carrera E, Jackson SD, Prat S: Feedback control and diurnal regulation of gibberellin 20-oxidase transcript levels in potato. Plant Physiol 1999, 119:765-774.
  • [131]Lange T, Hedden P, Graebe JE: Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis. Proc Natl Acad Sci USA 1994, 91:8552-8556.
  • [132]Lange T, Kappler J, Fischer A, Frisse A, Padeffke T, Schmidtke S, Lange MJ: Gibberellin biosynthesis in developing pumpkin seedlings. Plant Physiol 2005, 139:213-223.
  • [133]Curtis IS, Ward DA, Thomas SG, Phillips AL, Davey MR, Power JB, Lowe KC, Croker SJ, Lewis MJ, Magness SL, Hedden P: Induction of dwarfism in transgenic Solanum dulcamara by over-expression of a gibberellin 20-oxidase cDNA from pumpkin. Plant J 2000, 23:329-338.
  • [134]Lange T, Robatzek S, Frisse A: Cloning and expression of a gibberellin 2 beta,3 beta-hydroxylase cDNA from pumpkin endosperm. Plant Cell 1997, 9:1459-1467.
  • [135]Lange T: Cloning gibberellin dioxygenase genes from pumpkin endosperm by heterologous expression of enzyme activities in Escherichia coli. Proc Natl Acad Sci USA 1997, 94:6553-6558.
  • [136]Wu K, Li L, Gage DA, Zeevaart JA: Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach. Plant Physiol 1996, 110:547-554.
  • [137]Lee DJ, Zeevaart JA: Differential regulation of RNA levels of gibberellin dioxygenases by photoperiod in spinach. Plant Physiol 2002, 130:2085-2094.
  • [138]Lee DJ, Zeevaart JA: Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiol 2005, 138:243-254.
  • [139]Garcia-Martinez JL, Lopez-Diaz I, Sanchez-Beltran MJ, Phillips AL, Ward DA, Gaskin P, Hedden P: Isolation and transcript analysis of gibberellin 20-oxidase genes in pea and bean in relation to fruit development. Plant Mol Biol 1997, 33:1073-1084.
  • [140]Park SH, Nakajima M, Sakane M, Xu ZJ, Tomioka K, Yamaguchi I: Gibberellin 2-oxidases from seedlings of adzuki bean (Vigna angularis) show high gibberellin-binding activity in the presence of 2-oxoglutarate and Co2+. Biosci Biotechnol Biochem 2005, 69:1498-1507.
  • [141]Serrani JC, Sanjuán R, Ruiz-Rivero O, Fos M, García-Martínez JL: Gibberellin regulation of fruit set and growth in tomato. Plant Physiol 2007, 145(1):246-257.
  • [142]Rebers M, Kaneta T, Kawaide H, Yamaguchi S, Yang YY, Imai R, Sekimoto H, Kamiya Y: Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato. Plant J 1999, 17(3):241-250.
  • [143]Martí E, Carrera E, Ruiz-Rivero O, García-Martínez JL: Hormonal regulation of tomato gibberellin 20-oxidase1 expressed in Arabidopsis. J Plant Physiol 2010, 167(14):1188-1196.
  • [144]Xiao JH, Zhang JH, Zhang YY, Wang TT, Chen RG, Li HX, Ye ZB: Isolation and expression of GA 2-oxidase2 in tomato. DNA Seq. 2007, 18:472-477.
  • [145]Yang YY, Rebers M, Toyomasu T, Kawaide H, Kaneta T, Kamiya Y: Cloning of two cDNAs encoding gibberellin 3beta-hydroxylase (Accession No. AB010991, AB010992) of tomato (Solanum lycopersicum L.) seedlings (PGR98-200). Plant Physiol 1998, 118:1534-1534.
  • [146]Ward DA, Macmillan J, Gong F, Phillips AL, Hedden P: Gibberellin 3-oxidases in developing embryos of the southern wild cucumber, Marah macrocarpus. Phytochemistry 2010, 71:2010-2018.
  • [147]MacMillan J, Ward DA, Phillips AL, Sanchez-Beltran MJ, Gaskin P, Lange T, Hedden P: Gibberellin biosynthesis from gibberellin A12-aldehyde in endosperm and embryos of Marah macrocarpus. Plant Physiol 1997, 113:1369-1377.
  • [148]Toyomasu T, Kawaide H, Mitsuhashi W, Inoue Y, Kamiya Y: Phytochrome regulates gibberellin biosynthesis during germination of photoblastic lettuce seeds. Plant Physiol 1998, 118:1517-1523.
  • [149]Nakaminami K, Sawada Y, Suzuki M, Kenmoku H, Kawaide H, Mitsuhashi W, Sassa T, Inoue Y, Kamiya Y, Toyomasu T: Deactivation of gibberellin by 2-oxidation during germination of photoblastic lettuce seeds. Biosci Biotechnol Biochem 2003, 67:1551-1558.
  • [150]Toyomasu T, Mitsuhashi W, Kamiya YGibberellin biosynthetic enzyme. Submitted (AUG-1999) to the EMBL/GenBank/DDBJ databases. Strain: Grand Rapids EMBL Nos. BAB12438.1 (Ls20ox3); BAB12439.1 (Ls3h3)
  • [151]Seward DJ, Cubberley G, Kim S, Schonewald M, Zhang L, Tripet B, Bentley DL: Demethylation of trimethylated histone H3 Lys4 in vivo by JARID1 JmjC proteins. Nat Struct Mol Biol 2007, 14:240-242.
  • [152]Tanabe W, Suzuki S, Muto Y, Inoue M, Kigawa T, Terada T, Shirouzu M, Yokoyama S: Solution structure of the ARID domain of Jarid1b protein. J . To be Published
  • [153]Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M, Shi Y: Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 2006, 125:467-481.
  • [154]Yue WW, Gileadi C, Krojer T, Pike ACW, Vondelft F, Ng S, Carpenter L, Arrowsmith C, Weigelt J, Edwards A, Bountra C, Oppermann U: Crystal Structure of Human Jmjd2C Catalytic Domain Journal.  . To be Published
  • [155]Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, Iwase S, Alpatov R, Issaeva I, Canaani E, Roberts TM, Chang HY, Shi Y: A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 2007, 449(Suppl 7163):689-694.
  • [156]Che KH, Yue WW, Krojer T, Muniz JRC, Ng SS, Tumber A, Daniel M, Burgess-Brown N, Savitsky P, Von Delft F, Ugochukwu E, Filippakopoulos P, Arrowsmith C, Weigelt J, Edwards A, Bountra C, Oppermann U: Crystal Structure of the Human Jmjd3 Jumonji Domain Journal.  . To be Published
  • [157]Lee MG, Norman J, Shilatifard A, Shiekhattar R: Physical and functional association of a trimethyl H3K4 demethylase and Ring6a/MBLR, a polycomb-like protein. Cell 2007, 128:877-887.
  • [158]Tanabe W, Suzuki S, Muto Y, Inoue M, Kigawa T, Terada T, Shirouzu M, Yokoyama S: Solution structure of the ARID domain of JARID1D protein Journal.  . To be Published
  • [159]Chen Z, Zhang G: Crystal structure of the catalytic core domain of jmjd2d Journal.  . To be Published
  • [160]Wang GG, Song J, Wang Z, Dormann HL, Casadio F, Li H, Luo JL, Patel DJ, Allis CD: Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 2009, 459(7248):847-851.
  • [161]Klose RJ, Yan Q, Tothova Z, Yamane K, Erdjument-Bromage H, Tempst P, Gilliland DG, Zhang Y, Kaelin WG: The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 2007, 128:889-900.
  • [162]Christensen J, Agger K, Cloos PAC, Pasini D, Rose S, Sennels L, Rappsilber J, Hansen KH, Salcini AE, Helin K: RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell 2007, 128:1063-1076.
  • [163]Horton JR, Upadhyay AK, Qi HH, Zhang X, Shi Y, Cheng X: Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nat Struct Mol Biol 2010, 17:38-43.
  • [164]Yue WW, Hozjan V, Ge W, Loenarz C, Cooper CD, Schofield CJ, Kavanagh KL, Oppermann U, McDonough MA: Crystal structure of the PHF8 Jumonji domain, an N(epsilon)-methyl lysine demethylase. FEBS Lett 2010, 584:825-830.
  • [165]Tsukada Y, Ishitani T, Nakayama KI: KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes Dev 2010, 24:432-437.
  • [166]Lee N, Zhang J, Klose RJ, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y: The trithorax-group protein Lid is a histone H3 trimethyl-Lys4 demethylase. Nat Struct Mol Biol 2007, 14:341-343.
  • [167]Eissenberg JC, Lee MG, Schneider J, Ilvarsonn A, Shiekhattar R, Shilatifard A: The trithorax-group gene in Drosophila little imaginal discs encodes a trimethylated histone H3 Lys4 demethylase. Nat Struct Mol Biol 2007, 14:344-346.
  • [168]Mills JL, Lee D, Kohan E, Sahdev S, Acton TB, Xiao R, Everett JK, Montelione GT, Szyperski T: Northeast Structural Genomics Consortium Target FR824D Journal.  . To be Published
  • [169]Lorbeck MT, Singh N, Zervos A, Dhatta M, Lapchenko M, Yang C, Elefant F: The histone demethylase Dmel\Kdm4A controls genes required for life span and male-specific sex determination in Drosophila. Gene 2010, 450(1–2):8-17.
  • [170]Lloret-Llinares M, Carré C, Vaquero A, de Olano N, Azorín F: Characterization of Drosophila melanogaster JmjC + N histone demethylases. Nucleic Acids Res 2008, 36(9):2852-2863.
  • [171]Hong S, Cho YW, Yu L-R, Yu H, Veenstra TD, Ge K: Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci USA 2007, 104:18439-18444.
  • [172]Seenundun S, Rampalli S, Liu QC, Aziz A, Palii C, Hong S, Blais A, Brand M, Ge K, Dilworth FJ: UTX mediates demethylation of H3K27me3 at muscle-specific genes during myogenesis. EMBO J 2010, 29(8):1401-1411.
  • [173]De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G: The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 2007, 130:1083-1094.
  • [174]Hsia DA, Tepper CG, Pochampalli MR, Hsia EY, Izumiya C, Huerta SB, Wright ME, Chen HW, Kung HJ, Izumiya Y: KDM8, a H3K36me2 histone demethylase that acts in the cyclin A1 coding region to regulate cancer cell proliferation. Proc Natl Acad Sci USA 2010, 107:9671-9676.
  • [175]Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y: Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 2007, 450:119-123.
  • [176]Tateishi K, Okada Y, Kallin EM, Zhang Y: Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 2009, 458:757-761.
  • [177]Kim SM, Kim JY, Choe NW, Cho IH, Kim JR, Kim DW, Seol JE, Lee SE, Kook H, Nam KI, Kook H, Bhak YY, Seo SB: Regulation of mouse steroidogenesis by WHISTLE and JMJD1C through histone methylation balance. Nucleic Acids Res 2010, 38(19):6389-6403.
  • [178]Mikhaleva II, Prudchenko IA, Ivanov VT, Voitenkov VB: JmjC-domain-containing histone demethylases of the JMJD1B type as putative precursors of endogenous DSIP. Peptides 2011, 32(4):826-831.
  • [179]Koehler C, Bishop S, Dowler EF, Schmieder P, Diehl A, Oschkinat H, Ball LJ: Backbone and sidechain 1 H, 13 C and 15 N resonance assignments of the Bright/ARID domain from the human JARID1C (SMCX) protein. Biomol Nmr Assign 2008, 2:9-11.
  • [180]Iwase S, Lan F, Bayliss P, de la Torre-Ubieta L, Huarte M, Qi HH, Whetstine JR, Bonni A, Roberts TM, Shi Y: The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 2007, 128:1077-1088.
  • [181]Couture JF, Collazo E, Ortiz-Tello PA, Brunzelle JS, Trievel RC: Specificity and mechanism of JMJD2A, a trimethyllysine-specific histone demethylase. Nat Struct Mol Biol 2007, 14(8):689-695.
  • [182]Chen Z, Zang J, Whetstine J, Hong X, Davrazou F, Kutateladze TG, Simpson M, Mao Q, Pan C-H, Dai S, Hagman J, Hansen K, Shi Y, Zhang G: Structural insights into histone demethylation by JMJD2 family members. Cell 2006, 125:691-702.
  • [183]Jin C, Li J, Green CD, Yu X, Tang X, Han D, Xian B, Wang D, Huang X, Cao X, Yan Z, Hou L, Liu J, Shukeir N, Khaitovich P, Chen CD, Zhang H, Jenuwein T, Han JD: Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab 2011, 2:161-172.
  • [184]Maures TJ, Greer EL, Hauswirth AG, Brunet A: The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell 2011, 10(6):980-990.
  • [185]Smith ER, Lee MG, Winter B, Droz NM, Eissenberg JC, Shiekhattar R, Shilatifard A: Drosophila UTX is a histone H3 Lys27 demethylase that colocalizes with the elongating form of RNA polymerase II. Mol Cell Biol 2008, 28(3):1041-1046.
  • [186]Herz HM, Madden LD, Chen Z, Bolduc C, Buff E, Gupta R, Davuluri R, Shilatifard A, Hariharan IK, Bergmann A: The H3K27me3 demethylase dUTX is a suppressor of Notch- and Rb-dependent tumors in Drosophila. Mol Cell Biol. 2010, 30(10):2485-2497.
  • [187]Lu SX, Knowles SM, Webb CJ, Celaya RB, Cha C, Siu JP, Tobin EM: The Jumonji C domain-containing protein JMJ30 regulates period length in the Arabidopsis circadian clock. Plant Physiol 2011, 155(2):906-915.
  • [188]Blair LP, Cao J, Zou MR, Sayegh J, Yan Q: Epigenetic Regulation by Lysine Demethylase 5 (KDM5) Enzymes in Cancer. Cancers (Basel). 2011, 3(1):1383-1404.
  • [189]Roesch A, Mueller AM, Stempfl T, Moehle C, Landthaler M, Vogt T: RBP2-H1/JARID1B is a transcriptional regulator with a tumor suppressive potential in melanoma cells. Int J Cancer. 2008, 122(5):1047-1057.
  • [190]Ng SS, Kavanagh KL, McDonough MA, Butler D, Pilka ES, Lienard BM, Bray JE, Savitsky P, Gileadi O, von Delft F, Rose NR, Offer J, Scheinost JC, Borowski T, Sundstrom M, Schofield CJ, Oppermann U: Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature 2007, 448(7149):87-91.
  • [191]McNeill LA, Hewitson KS, Gleadle JM, Horsfall LE, Oldham NJ, Maxwell PH, Pugh CW, Ratcliffe PJ, Schofield CJ: The use of dioxygen by HIF prolyl hydroxylase (PHD1). Bioorg Med Chem Lett 2002, 12:1547-1550.
  • [192]Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM: Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 2004, 279:38458-38465.
  • [193]Tian YM, Mole DR, Ratcliffe PJ, Gleadle JM: Characterization of different isoforms of the HIF prolyl hydroxylase PHD1 generated by alternative initiation. Biochem J 2006, 397:179-186.
  • [194]Pappalardi MB, McNulty DE, Martin JD, Fisher KE, Jiang Y, Burns MC, Zhao H, Ho T, Sweitzer S, Schwartz B, Annan RS, Copeland RA, Tummino PJ, Luo L: Biochemical characterization of human HIF hydroxylases using HIF protein substrates that contain all three hydroxylation sites. Biochem J 2011, 436:363-369.
  • [195]van der Wel H, Ercan A, West CM: The Skp1 prolyl hydroxylase from Dictyostelium is related to the hypoxia-inducible factor-alpha class of animal prolyl 4-hydroxylases. J Biol Chem 2005, 280:14645-14655.
  • [196]Elkins JM, Hewitson KS, McNeill LA, Seibel JF, Schlemminger I, Pugh CW, Ratcliffe PJ, Schofield CJ: Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1 alpha. J Biol Chem 2003, 278:1802-1806.
  • [197]Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK: FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 2002, 16:1466-1471.
  • [198]Dann CE, Bruick RK, Deisenhofer J: Structure of factor-inhibiting hypoxia-inducible factor 1: an asparaginyl hydroxylase involved in the hypoxic response pathway. Proc Natl Acad Sci USA 2002, 99:15351-15356.
  • [199]McDonough MA, Li V, Flashman E, Chowdhury R, Mohr C, Lienard BMR, Zondlo J, Oldham NJ, Clifton IJ, Lewis J, McNeill LA, Kurzeja RJ, Hewitson KS, Yang E, Jordan S, Syed RS, Schofield CJ: Cellular oxygen sensing: crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proc Natl Acad Sci USA 2006, 103:9814-9819.
  • [200]Kim HS, Kim HL, Kim KH, do Kim J, Lee SJ, Yoon JY, Yoon HJ, Lee HY, Park SB, Kim SJ, Lee JY, Suh SW: Crystal structure of Tpa1 from Saccharomyces cerevisiae, a component of the messenger ribonucleoprotein complex. Nucleic Acids Res 2010, 38(6):2099-2110.
  • [201]Saito K, Adachi N, Koyama H, Matsushita M: OGFOD1, a member of the 2-oxoglutarate and iron dependent dioxygenase family, functions in ischemic signaling. FEBS Lett 2010, 584(15):3340-3347.
  • [202]Hughes BT, Espenshade PJ: Oxygen-regulated degradation of fission yeast SREBP by Ofd1, a prolyl hydroxylase family member. EMBO J 2008, 27(10):1491-1501.
  • [203]Koivunen P, Hirsilä M, Günzler V, Kivirikko KI, Myllyharju J: Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J Biol Chem 2004, 279(11):9899-9904.
  • [204]Barth S, Edlich F, Berchner-Pfannschmidt U, Gneuss S, Jahreis G, Hasgall PA, Fandrey J, Wenger RH, Camenisch G: Hypoxia-inducible factor prolyl-4-hydroxylase PHD2 protein abundance depends on integral membrane anchoring of FKBP38. J Biol Chem 2009, 284(34):23046-23058.
  • [205]Matsuda J, Okabe S, Hashimoto T, Yamada Y: Molecular cloning of hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger. J Biol Chem 1991, 266:9460-9464.
  • [206]Vazquez-Flota F, De Carolis E, Alarco A-M, De Luca V: Molecular cloning and characterization of desacetoxyvindoline-4-hydroxylase, a 2-oxoglutarate dependent-dioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus (L.) G. Don. Plant Mol Biol 1997, 34:935-948.
  • [207]De Carolis E, De Luca V: Purification, characterization, and kinetic analysis of a 2-oxoglutarate-dependent dioxygenase involved in vindoline biosynthesis from Catharanthus roseus. J Biol Chem 1993, 268:5504-5511.
  • [208]Cardillo AB, Talou JR, Giulietti AM: Expression of Brugmansia candida Hyoscyamine 6beta-Hydroxylase gene in Saccharomyces cerevisiae and its potential use as biocatalyst. Microb Cell Fact 2008, 7:17. BioMed Central Full Text
  • [209]Liu T, Zhu P, Cheng KD, Meng C, He HX: Molecular cloning, expression and characterization of hyoscyamine 6beta-hydroxylase from hairy roots of Anisodus tanguticus. Planta Med 2005, 71:249-253.
  • [210]Pramod KK, Singh S, Jayabaskaran C: Biochemical and structural characterization of recombinant hyoscyamine 6β-hydroxylase from Datura metel L. Plant Physiol Biochem 2010, 48(12):966-970.
  • [211]El Jaber-Vazdekis N, González C, Ravelo AG, Zárate R: Cloning, characterization and analysis of expression profiles of a cDNA encoding a hyoscyamine 6beta-hydroxylase (H6H) from Atropa baetica Willk. Plant Physiol Biochem 2009, 47(1):20-25.
  • [212]Montero-Morán GM, Li M, Rendòn-Huerta E, Jourdan F, Lowe DJ, Stumpff-Kane AW, Feig M, Scazzocchio C, Hausinger RP: Purification and characterization of the FeII- and alpha-ketoglutarate-dependent xanthine hydroxylase from Aspergillus nidulans. Biochemistry 2007, 46(18):5293-5304.
  • [213]Cultrone A, Scazzocchio C, Rochet M, Montero-Morán G, Drevet C, Fernández-Martín R: Convergent evolution of hydroxylation mechanisms in the fungal kingdom: molybdenum cofactor-independent hydroxylation of xanthine via alpha-ketoglutarate-dependent dioxygenases. Mol Microbiol 2005, 57(1):276-290.
  • [214]Vainio S, Genest P-A, ter Riet B, van Luenen HGAM, Borst P: Evidence that J-binding protein 2 is a thymidine hydroxylase catalyzing the first step in the biosynthesis of DNA base J. Mol Biochem Parasitol 2009, 164:157-161.
  • [215]Yu Z, Genest P-A, ter Riet B, Sweeney K, DiPaolo C, Kieft R, Christodoulou E, Perrakis A, Simmons JM, Hausinger RP, van Luenen HGAM, Rigden DJ, Sabatini R, Borst P: The protein that binds to DNA base J in trypanosomatids has features of a thymidine hydroxylase. Nucleic Acids Res 2007, 35:2107-2115.
  • [216]Cliffe LJ, Kieft R, Southern T, Birkeland SR, Marshall M, Sweeney K, Sabatini R: JBP1 and JBP2 are two distinct thymidine hydroxylases involved in J biosynthesis in genomic DNA of African trypanosomes. Nucleic Acids Res 2009, 37:1452-1462.
  • [217]Neidigh JW, Darwanto A, Williams AA, Wall NR, Sowers LC: Cloning and characterization of Rhodotorula glutinis thymine hydroxylase. Chem. Res. Toxicol. 2009, 22:885-893.
  • [218]Hsu CA, Saewert MD, Polsinelli LF, Abbott MT: Uracil's uncoupling of the decarboxylation of alpha-ketoglutarate in the thymine 7-hydroxylase reaction of Neurospora crassa. J Biol Chem 1981, 256(12):6098-6101.
  • [219]Holme E: A kinetic study of thymine 7-hydroxylase from neurospora crassa. Biochemistry 1975, 14(22):4999-5003.
  • [220]McDonough MA, Kavanagh KL, Butler D, Searls T, Oppermann U, Schofield CJ: Structure of human phytanoyl-CoA 2-hydroxylase identifies molecular mechanisms of Refsum disease. J Biol Chem 2005, 280(49):41101-41110.
  • [221]Zhang Z, Kochan GT, Ng SS, Kavanagh KL, Oppermann U, Schofield CJ, McDonough MA: Crystal structure of PHYHD1A, a 2OG oxygenase related to phytanoyl-CoA hydroxylase. Biochem Biophys Res Commun. 2011, 408(4):553-558.
  • [222]Jansen GA, Ofman R, Denis S, Ferdinandusse S, Hogenhout EM, Jakobs C, Wanders RJA: Phytanoyl-CoA hydroxylase from rat liver: protein purification and cDNA cloning with implications for the subcellular localization of phytanic acid alpha-oxidation. J Lipid Res 1999, 40:2244-2254.
  • [223]Iwano M, Ueno M, Miyazaki M, Harada T, Nagai Y, Hirano M, Dohi Y, Akai Y, Kurioka H, Dohi K: Molecular cloning and expression of a novel peptide (LN1) gene: reduced expression in the renal cortex of lupus nephritis in MRL/lpr mouse. Biochem Biophys Res Commun 1996, 229:355-360.
  • [224] . Arabidopsis thaliana [At2g01490/F2I9.11] 283 aa Accession AAM51599 GI:21436043 AY116965.1 (mRNA)
  • [225]Kershaw NJ, Mukherji M, MacKinnon CH, Claridge TD, Odell B, Wierzbicki AS, Lloyd MD, Schofield CJ: Studies on phytanoyl-CoA 2-hydroxylase and synthesis of phytanoyl-coenzyme A. Bioorg Med Chem Lett 2001, 11(18):2545-2548.
  • [226]You Z, Omura S, Ikeda H, Cane DE, Jogl G: Crystal structure of the non-heme iron dioxygenase PtlH in pentalenolactone biosynthesis. J Biol Chem 2007, 282:36552-36560.
  • [227]Müller I, Kahnert A, Pape T, Sheldrick GM, Meyer-Klaucke W, Dierks T, Kertesz M, Usón I: Crystal structure of the alkylsulfatase AtsK: insights into the catalytic mechanism of the Fe(II) alpha-ketoglutarate-dependent dioxygenase superfamily. Biochemistry 2004, 43(11):3075-3088.
  • [228]Kahnert A, Kertesz MA: Characterization of a sulfur-regulated oxygenative alkylsulfatase from Pseudomonas putida S-313. J Biol Chem 2000, 275:31661-31667.
  • [229]Elkins JM, Ryle MJ, Clifton IJ, Dunning Hotopp JC, Lloyd JS, Burzlaff NI, Baldwin JE, Hausinger RP, Roach PL: X-ray crystal structure of Escherichia coli taurine/alpha-ketoglutarate dioxygenase complexed to ferrous iron and substrates. Biochemistry 2002, 41(16):5185-5192.
  • [230]Eichhorn E, van der Ploeg JR, Kertesz MA, Leisinger T: Characterization of alpha-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. J Biol Chem 1997, 272:23031-23036.
  • [231]Hogan DA, Auchtung TA, Hausinger RP: Cloning and characterization of a sulfonate/alpha-ketoglutarate dioxygenase from Saccharomyces cerevisiae. J Bacteriol 1999, 181:5876-5879.
  • [232]Fukumori F, Hausinger RP: Alcaligenes eutrophus JMP134 "2,4-dichlorophenoxyacetate monooxygenase" is an alpha-ketoglutarate- dependent dioxygenase. J Bacteriol. 1993, 175(7):2083-2086.
  • [233]Hogan DA, Smith SR, Saari EA, McCracken J, Hausinger RP: Site-directed mutagenesis of 2,4-dichlorophenoxyacetic acid/alpha-ketoglutarate dioxygenase. Identification of residues involved in metallocenter formation and substrate binding. J Biol Chem 2000, 275:12400-12409.
  • [234]Müller RH, Kleinsteuber S, Babel W: Physiological and genetic characteristics of two bacterial strains utilizing phenoxypropionate and phenoxyacetate herbicides. Microbiol Res 2001, 156(2):121-131.
  • [235]Westendorf A, Benndorf D, Kleinsteuber S, Mueller RH, Harms H: The S-enantiomer specific enzymes from Rhodoferax sp. P230 and Sphingobium herbicidovorans MH involved in the cleavage of 2-phenoxypropionate (dichlorprop and mecoprop) and phenoxyacetate herbicides (2,4-D and MCPA), kinetic characteristics and protein data.  . Direct submission 2006, EMBL/GenBank/DDBJ database
  • [236]Schleinitz KM, Kleinsteuber S, Vallaeys T, Babel W: Localization and characterization of two novel genes encoding stereospecific dioxygenases catalyzing 2(2,4-dichlorophenoxy)propionate cleavage in Delftia acidovorans MC1. Appl Environ Microbiol 2004, 70:5357-5365.
  文献评价指标  
  下载次数:62次 浏览次数:60次