期刊论文详细信息
BMC Genomics
On the association of common and rare genetic variation influencing body mass index: a combined SNP and CNV analysis
Bradley T Webb1  Danielle M Dick2  Howard J Edenberg7  John I Nurnberger4  Lance O Bauer3  Victor M Hesselbrock3  John R Kramer9  Peng Lin5  Hermine H Maes6  Roseann E Peterson8 
[1] Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;Department of Psychiatry, School of Medicine, University of Connecticut, Farmington, CT 06030, USA;Institute of Psychiatric Research, Department of Psychiatry, School of Medicine, Indiana University, Indianapolis, IN 46226, USA;Department of Psychiatry, Washington University, St. Louis, MO 63105, USA;Virginia Institute for Psychiatric and Behavioral Genetics, Department of Human and Molecular Genetics, Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46226, USA;Virginia Institute for Psychiatric and Behavioral Genetics, Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Biotech I, 800 E. Leigh Street, Richmond, VA 23298-0126, USA;Department of Psychiatry, University of Iowa, Iowa City, IA 52240, USA
关键词: MC4R;    FTO;    Polygenic score;    Risk prediction;    Copy number variation;    Genome-wide association;    Obesity;    Body mass index;   
Others  :  1217233
DOI  :  10.1186/1471-2164-15-368
 received in 2013-06-12, accepted in 2014-04-27,  发布年份 2014
PDF
【 摘 要 】

Background

As the architecture of complex traits incorporates a widening spectrum of genetic variation, analyses integrating common and rare variation are needed. Body mass index (BMI) represents a model trait, since common variation shows robust association but accounts for a fraction of the heritability. A combined analysis of single nucleotide polymorphisms (SNP) and copy number variation (CNV) was performed using 1850 European and 498 African-Americans from the Study of Addiction: Genetics and Environment. Genetic risk sum scores (GRSS) were constructed using 32 BMI-validated SNPs and aggregate-risk methods were compared: count versus weighted and proxy versus imputation.

Results

The weighted SNP-GRSS constructed from imputed probabilities of risk alleles performed best and was highly associated with BMI (p = 4.3×10−16) accounting for 3% of the phenotypic variance. In addition to BMI-validated SNPs, common and rare BMI/obesity-associated CNVs were identified from the literature. Of the 84 CNVs previously reported, only 21-kilobase deletions on 16p12.3 showed evidence for association with BMI (p = 0.003, frequency = 16.9%), with two CNVs nominally associated with class II obesity, 1p36.1 duplications (OR = 3.1, p = 0.009, frequency 1.2%) and 5q13.2 deletions (OR = 1.5, p = 0.048, frequency 7.7%). All other CNVs, individually and in aggregate, were not associated with BMI or obesity. The combined model, including covariates, SNP-GRSS, and 16p12.3 deletion accounted for 11.5% of phenotypic variance in BMI (3.2% from genetic effects). Models significantly predicted obesity classification with maximum discriminative ability for morbid-obesity (p = 3.15×10−18).

Conclusion

Results show that incorporating validated effect sizes and allelic probabilities improve prediction algorithms. Although rare-CNVs did not account for significant phenotypic variation, results provide a framework for integrated analyses.

【 授权许可】

   
2014 Peterson et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705161402730.pdf 348KB PDF download
Figure 1. 37KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Centers for Disease Control and Prevention [http://www.cdc.gov webcite]
  • [2]Ogden CL, Yanovski SZ, Carroll MD, Flegal KM: The epidemiology of obesity. Gastroenterology 2007, 132(6):2087-2102.
  • [3]Apovian C, Gokce N: Obesity and cardiovascular disease. Circulation 2012, 125(9):1178-1182.
  • [4]Chen L, Magliano D, Zimmet P: The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nat Rev Endocrinol 2011, 8(4):228.
  • [5]Faulds M, Dahlman Wright K: Metabolic diseases and cancer risk. Curr Opin Oncol 2012, 24(1):58-61.
  • [6]Maes HH, Neale MC, Eaves LJ: Genetic and environmental factors in relative body weight and human adiposity. Behav Genet 1997, 27(4):325-351.
  • [7]Loos RJF: Recent progress in the genetics of common obesity. Br J Clin Pharmacol 2009, 68(6):811.
  • [8]Day F, Loos RJF: Developments in obesity genetics in the era of genome-wide association studies. J Nutrigenet Nutrigenomics 2011, 4(4):222-238.
  • [9]Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, Lango Allen H, Lindgren CM, Luan J, Magi R, Randall JC, Vedantam S, Winkler TW, Qi L, Workalemahu T, Heid IM, Steinthorsdottir V, Stringham HM, Weedon MN, Wheeler E, Wood AR, Ferreira T, Weyant RJ, Segre AV, Estrada K, Liang L, Nemesh J, Park JH, Gustafsson S, Kilpelainen TO, et al.: Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 2010, 42(11):937.
  • [10]Kang SJ, Chiang CW, Palmer CD, Tayo BO, Lettre G, Butler JL, Hackett R, Adeyemo AA, Guiducci C, Berzins I, Nguyen TT, Feng T, Luke A, Shriner D, Ardlie K, Rotimi C, Wilks R, Forrester T, McKenzie CA, Lyon HN, Cooper RS, Zhu X, Hirschhorn JN: Genome-wide association of anthropometric traits in African- and African-derived populations; Human molecular genetics. Hum Mol Genet 2010, 19:2725-38.
  • [11]Ng MC, Hester JM, Wing MR, Li J, Xu J, Hicks PJ, Roh BH, Lu L, Divers J, Langefeld CD, Freedman BI, Palmer ND, Bowden DW: Genome-wide association of BMI in African Americans. Obesity (Silver Spring) 2012, 20(3):622-627.
  • [12]Hester JM, Wing MR, Li J, Palmer ND, Xu J, Hicks PJ, Roh BH, Norris JM, Wagenknecht LE, Langefeld CD, Freedman BI, Bowden DW, Ng MCY: Implication of European-derived adiposity loci in African Americans. Int J Obes 2012, 36(3):465-473.
  • [13]Peters U, North KE, Sethupathy P, Buyske S, Haessler J, Jiao S, Fesinmeyer MD, Jackson RD, Kuller LH, Rajkovic A, Lim U, Cheng I, Schumacher F, Wilkens L, Li R, Monda K, Ehret G, Nguyen KD, Cooper R, Lewis CE, Leppert M, Irvin MR, Gu CC, Houston D, Buzkova P, Ritchie M, Matise TC, Le Marchand L, Hindorff LA, Crawford DC, et al.: A systematic mapping approach of 16q12.2/FTO and BMI in more than 20,000 African Americans narrows in on the underlying functional variation: results from the Population Architecture using Genomics and Epidemiology (PAGE) study. PLoS Genet 2013, 9(1):e1003171.
  • [14]Monda KL, Chen GK, Taylor KC, Palmer C, Edwards TL, Lange LA, Ng MCY, Adeyemo AA, Allison MA, Bielak LF, Chen G, Graff M, Irvin MR, Rhie SK, Li G, Liu Y, Liu Y, Lu Y, Nalls MA, Sun YV, Wojczynski MK, Yanek LR, Aldrich MC, Ademola A, Amos CI, Bandera EV, Bock CH, Britton A, Broeckel U, Cai Q, et al.: A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. Nat Genet 2013, 45(6):690-696.
  • [15]Yang J, Manolio T, Pasquale L, Boerwinkle E, Caporaso N, Cunningham J, De Andrade M, Feenstra B, Feingold E, Hayes MG, Hill W, Landi M, Alonso A, Lettre G, Lin P, Ling H, Lowe W, Mathias R, Melbye M, Pugh E, Cornelis M, Weir B, Goddard M, Visscher P: Genome partitioning of genetic variation for complex traits using common SNPs. Nat Genet 2011, 43(6):519-525.
  • [16]Ahituv N, Kavaslar N, Schackwitz W, Ustaszewska A, Martin J, Hebert S, Doelle H, Ersoy B, Kryukov G, Schmidt S, Yosef N, Ruppin E, Sharan R, Vaisse C, Sunyaev S, Dent R, Cohen J, McPherson R, Pennacchio L: Medical sequencing at the extremes of human body mass. Am J Hum Genet 2007, 80(4):779-791.
  • [17]Walters RG, Jacquemont S, Valsesia A, De Smith AJ, Martinet D, Andersson J, Falchi M, Chen F, Andrieux J, Lobbens S, Delobel B, Stutzmann F, El-Sayed Moustafa JS, Chèvre J, Lecoeur C, Vatin V, Bouquillon S, Buxton JL, Boute O, Holder-Espinasse M, Cuisset J, Lemaitre M, Ambresin A, Brioschi A, Gaillard M, Giusti V, Fellmann F, Ferrarini A, Hadjikhani N, Campion D, et al.: A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. Nature 2010, 463(7281):671.
  • [18]Bochukova E, Huang N, Keogh J, Henning E, Purmann C, Blaszczyk K, Saeed S, Hamilton-Shield J, Clayton-Smith J, O’Rahilly S, Hurles M, Farooqi IS: Large, rare chromosomal deletions associated with severe early-onset obesity. Nature 2010, 463(7281):666.
  • [19]Wang K, Li W, Glessner J, Grant SFA, Hakonarson H, Price RA: Large copy-number variations are enriched in cases with moderate to extreme obesity. Diabetes 2010, 59(10):2690-2694.
  • [20]Bachmann Gagescu R, Mefford H, Cowan C, Glew G, Hing A, Wallace S, Bader P, Hamati A, Reitnauer P, Smith R, Stockton D, Muhle H, Helbig I, Eichler E, Ballif B, Rosenfeld J, Tsuchiya K: Recurrent 200-kb deletions of 16p11.2 that include the SH2B1 gene are associated with developmental delay and obesity. Gen Med 2010, 12(10):641.
  • [21]Glessner J, Bradfield J, Wang K, Takahashi N, Zhang H, Sleiman P, Mentch F, Kim C, Hou C, Thomas K, Garris M, Deliard S, Frackelton E, Otieno FG, Zhao J, Chiavacci R, Li M, Buxbaum J, Berkowitz R, Hakonarson H, Grant SFA: A genome-wide study reveals copy number variants exclusive to childhood obesity cases. Am J Hum Genet 2010, 87(5):661.
  • [22]Shinawi M, Sahoo T, Maranda B, Skinner SA, Skinner C, Chinault C, Zascavage R, Peters S, Patel A, Stevenson R, Beaudet A: 11p14.1 microdeletions associated with ADHD, autism, developmental delay, and obesity. Am J Med Genet A 2011, 155A(6):1272-1280.
  • [23]Jacquemont S, Reymond A, Zufferey F, Harewood L, Walters RG, Kutalik Z, Martinet D, Shen Y, Valsesia A, Beckmann ND, Thorleifsson G, Belfiore M, Bouquillon S, Campion D, De Leeuw N, De Vries BBA, Esko T, Fernandez BA, Fernandez-Aranda F, Fernandez-Real JM, Gratacos M, Guilmatre A, Hoyer J, Jarvelin MR, Kooy FR, Kurg A, Le Caignec C, Mannik K, Platt OS, Sanlaville D, et al.: Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature 2011, 478:97-102.
  • [24]Sofos E, Pescosolido MF, Quintos JB, Abuelo D, Gunn S, Hovanes K, Morrow EM, Shur N: A novel familial 11p15.4 microduplication associated with intellectual disability, dysmorphic features, and obesity with involvement of the ZNF214 gene. Am J Med Genet A 2012, 158A(1):50-58.
  • [25]Bierut L, Agrawal A, Bucholz K, Doheny K, Laurie C, Pugh E, Fisher S, Fox L, Howells W, Bertelsen S, Hinrichs A, Almasy L, Breslau N, Culverhouse R, Dick D, Edenberg H, Foroud T, Grucza R, Hatsukami D, Hesselbrock V, Johnson E, Kramer J, Krueger R, Kuperman S, Lynskey M, Mann K, Neuman R, Nthen M, Nurnberger J, Porjesz B, et al.: A genome-wide association study of alcohol dependence. Proc Natl Acad Sci U S A 2010, 107(11):5082-5087.
  • [26]Bucholz KK, Cadoret R, Cloninger CR, Dinwiddie SH, Hesselbrock VM, Nurnberger JI, Reich T, Schmidt I, Schuckit MA: A new, semi-structured psychiatric interview for use in genetic linkage studies: a report on the reliability of the SSAGA. J Stud Alcohol 1994, 55(2):149-158.
  • [27]American Psychiatric Association., American Psychiatric Association. Task Force on DSM-IV: Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR. Washington, DC: American Psychiatric Association; 2000.
  • [28]Howie B, Donnelly P, Marchini J: A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 2009, 5(6):e1000529-e1000529.
  • [29]Howie B, Marchini J, Stephens M: Genotype imputation with thousands of genomes. G3 2011, 1(6):457-470.
  • [30]1000 Genomes Project Consortium: A map of human genome variation from population-scale sequencing. Nature 2010, 467(7319):1061-1073.
  • [31]Price A, Patterson N, Plenge R, Weinblatt M, Shadick N, Reich D: Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006, 38(8):904.
  • [32]Patterson N, Price A, Reich D: Population structure and eigenanalysis. PLoS Genet 2006, 2(12):e190.
  • [33]Shriner D: Investigating population stratification and admixture using eigenanalysis of dense genotypes. Heredity 2011, 107(5):413-420.
  • [34]Gauderman WJ MJ: QUANTO 1.1: A Computer Program for Power and Sample Size Calculations for Genetic-Epidemiology Studies. 2006.
  • [35]Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SFA, Hakonarson H, Bucan M: PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 2007, 17(11):1665-1674.
  • [36]Colella S, Yau C, Taylor J, Mirza G, Butler H, Clouston P, Bassett A, Seller A, Holmes C, Ragoussis J: QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res 2007, 35(6):2013-2025.
  • [37]Diskin S, Li M, Hou C, Yang S, Glessner J, Hakonarson H, Bucan M, Maris J, Wang K: Adjustment of genomic waves in signal intensities from whole-genome SNP genotyping platforms. Nucleic Acids Res 2008, 36(19):e126-e126.
  • [38]Lin P, Hartz S, Wang J, Krueger R, Foroud T, Edenberg H, Nurnberger J, Brooks A, Tischfield J, Almasy L, Webb B, Hesselbrock V, Porjesz B, Goate A, Bierut L, Rice J: Copy number variation accuracy in genome-wide association studies. Hum Hered 2011, 71(3):141-147.
  • [39]Sanders S, Ercan Sencicek AG, Hus V, Luo R, Murtha M, Moreno-De-Luca D, Chu S, Moreau M, Gupta A, Thomson S, Mason C, Bilguvar K, Celestino-Soper PBS, Choi M, Crawford E, Davis L, Wright NRD, Dhodapkar R, DiCola M, DiLullo N, Fernandez T, Fielding Singh V, Fishman D, Frahm S, Garagaloyan R, Goh G, Kammela S, Klei L, Lowe J, Lund S, et al.: Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 2011, 70(5):863-885.
  • [40]Need A, Ge D, Weale M, Maia J, Feng S, Heinzen E, Shianna K, Yoon W, Kasperaviciūte D, Gennarelli M, Strittmatter W, Bonvicini C, Rossi G, Jayathilake K, Cola P, McEvoy J, Keefe RSE, Fisher EMC, St Jean P, Giegling I, Hartmann A, Mller H, Ruppert A, Fraser G, Crombie C, Middleton L, St Clair D, Roses A, Muglia P, Francks C, et al.: A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet 2009, 5(2):e1000373-e1000373.
  • [41]Johnson A, Handsaker R, Pulit S, Nizzari M, O’Donnell C, De Bakker PIW: SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 2008, 24(24):2938.
  • [42]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, De Bakker PIW, Daly M, Sham P: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007, 81(3):559.
  • [43]R Development Core Team: R: A Language and Environment for Statistical Computing. 2011.
  • [44]Peterson R, Maes H, Holmans P, Sanders A, Levinson D, Shi J, Kendler K, Gejman P, Webb B: Genetic risk sum score comprised of common polygenic variation is associated with body mass index. Hum Genet 2011, 129(2):221-230.
  • [45]Li B, Leal S: Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 2008, 83(3):311-321.
  • [46]Bansal V, Libiger O, Torkamani A, Schork N: Statistical analysis strategies for association studies involving rare variants. Nature reviews. Genetics 2010, 11(11):773-785.
  • [47]Vergara I, Norambuena T, Ferrada E, Slater A, Melo F: StAR: a simple tool for the statistical comparison of ROC curves. BMC Bioinforma 2008, 9:265-265. BioMed Central Full Text
  • [48]Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, Berndt SI, Elliott AL, Jackson AU, Lamina C, Lettre G, Lim N, Lyon HN, McCarroll SA, Papadakis K, Qi L, Randall JC, Roccasecca RM, Sanna S, Scheet P, Weedon MN, Wheeler E, Zhao JH, Jacobs LC, Prokopenko I, Soranzo N, Tanaka T, Timpson NJ, Almgren P, Bennett A, et al.: Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 2009, 41(1):25-34.
  • [49]Jarick I, Vogel CIG, Scherag S, Schfer H, Hebebrand J, Hinney A, Scherag A: Novel common copy number variation for early onset extreme obesity on chromosome 11q11 identified by a genome-wide analysis. Hum Mol Genet 2011, 20(4):840.
  • [50]Belsky DW, Moffitt TE, Baker TB, Biddle AK, Evans JP, Harrington H, Houts R, Meier M, Sugden K, Williams B, Poulton R, Caspi A: Polygenic risk and the developmental progression to heavy, persistent smoking and nicotine dependence: Evidence from a 4-decade longitudinal study. JAMA Psychiatry 2013, 1-9.
  • [51]Walters RG, Coin LJM, Ruokonen A, De Smith AJ, El-Sayed Moustafa JS, Jacquemont S, Elliott P, Esko T, Hartikainen A, Laitinen J, Männik K, Martinet D, Meyre D, Nauck M, Schurmann C, Sladek R, Thorleifsson G, Thorsteinsdóttir U, Valsesia A, Waeber G, Zufferey F, Balkau B, Pattou F, Metspalu A, Völzke H, Vollenweider P, Stefansson K, Järvelin M, Beckmann JS, Froguel P, et al.: Rare genomic structural variants in complex disease: lessons from the Replication of Associations with Obesity. PLoS One 2013, 8(3):e58048.
  • [52]Renström F, Payne F, Nordström A, Brito E, Rolandsson O, Hallmans G, Barroso I, Nordstrm P, Franks P: Replication and extension of genome-wide association study results for obesity in 4923 adults from northern Sweden. Hum Mol Genet 2009, 18(8):1489.
  • [53]Li S, Zhao J, Luan J, Luben R, Rodwell S, Khaw K, Ong K, Wareham N, Loos RJF: Cumulative effects and predictive value of common obesity-susceptibility variants identified by genome-wide association studies. Am J Clin Nutr 2010, 91(1):184.
  • [54]Cheung CY, Tso AW, Cheung BM, Xu A, Ong KL, Fong CH, Wat NM, Janus ED, Sham PC, Lam KS: Obesity Susceptibility Genetic Variants Identified from Recent Genome-Wide Association Studies: implications in a Chinese population. J Clin Endocrinol Metab 2010, 95(3):1395-1403.
  • [55]Chiolero A, Faeh D, Paccaud F, Cornuz J: Consequences of smoking for body weight, body fat distribution, and insulin resistance. Am J Clin Nutr 2008, 87(4):801.
  • [56]Lourenço S, Oliveira A, Lopes C: The effect of current and lifetime alcohol consumption on overall and central obesity. Eur J Clin Nutr 2012, 66(7):813.
  • [57]Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V, Thorleifsson G, Zillikens MC, Speliotes EK, Magi R, Workalemahu T, White CC, Bouatia-Naji N, Harris TB, Berndt SI, Ingelsson E, Willer CJ, Weedon MN, Luan J, Vedantam S, Esko T, Kilpelainen TO, Kutalik Z, Li S, Monda KL, Dixon AL, Holmes CC, Kaplan LM, Liang L, Min JL, et al.: Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 2010, 42(11):949-960.
  • [58]Lindgren CM, Heid IM, Randall JC, Lamina C, Steinthorsdottir V, Qi L, Speliotes EK, Thorleifsson G, Willer CJ, Herrera BM, Jackson AU, Lim N, Scheet P, Soranzo N, Amin N, Aulchenko YS, Chambers JC, Drong A, Luan J, Lyon HN, Rivadeneira F, Sanna S, Timpson NJ, Zillikens MC, Zhao JH, Almgren P, Bandinelli S, Bennett AJ, Bergman RN, Bonnycastle LL, et al.: Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution. PLoS Genet 2009, 5(6):e1000508.
  • [59]Berndt SI, Gustafsson S, Magi R, Ganna A, Wheeler E, Feitosa MF, Justice AE, Monda KL, Croteau-Chonka D, Day FR, Esko T, Fall T, Ferreira T, Gentilini D, Jackson AU, Luan J, Randall JC, Vedantam S, Willer CJ, Winkler TW, Wood AR, Workalemahu T, Hu Y, Lee SH, Liang L, Lin D, Min JL, Neale BM, Thorleifsson G, Yang J, et al.: Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet 2013, 45(5):501-512.
  • [60]Rampersaud E, Mitchell B, Pollin T, Fu M, Shen H, O’Connell J, Ducharme J, Hines S, Sack P, Naglieri R, Shuldiner A, Snitker S: Physical activity and the association of common FTO gene variants with body mass index and obesity. Arch Intern Med 2008, 168(16):1791.
  • [61]Qi L, Kraft P, Hunter D, Hu F: The common obesity variant near MC4R gene is associated with higher intakes of total energy and dietary fat, weight change and diabetes risk in women. Hum Mol Genet 2008, 17(22):3502.
  • [62]Kilpeläinen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E, Ahmad T, Mora S, Kaakinen M, Sandholt CH, Holzapfel C, Autenrieth CS, Hyppönen E, Cauchi S, He M, Kutalik Z, Kumari M, Stančáková A, Meidtner K, Balkau B, Tan JT, Mangino M, Timpson NJ, Song Y, Zillikens MC, Jablonski KA, Garcia ME, Johansson S, Bragg-Gresham JL, Wu Y, et al.: Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med 2011, 8(11):e1001116.
  文献评价指标  
  下载次数:9次 浏览次数:16次