期刊论文详细信息
BMC Genomics
Inventory of the cichlid olfactory receptor gene repertoires: identification of olfactory genes with more than one coding exon
Francis Galibert1  Frederique Barloy-Hubler1  Naoual Azzouzi1 
[1] Institut Génétique et Développement (UMR 6290) CNRS/Université de Rennes 1, Rennes, France
关键词: Coding exons;    Olfactory receptors;    Cichlids;    Tetraodon;    Fugu;    Stickleback;    Medaka;    Zebrafish;   
Others  :  1216492
DOI  :  10.1186/1471-2164-15-586
 received in 2014-01-15, accepted in 2014-07-01,  发布年份 2014
PDF
【 摘 要 】

Background

To help understand the molecular mechanisms underlying the remarkable phenotypic diversity displayed by cichlids, the genome sequences of O. niloticus, P. nyererei, H. burtoni, N. brichardi and M. zebra were recently determined. Here, we present the contents of the olfactory receptor (OR) repertoires in the genomes of these five fishes.

Results

We performed an exhaustive TBLASTN search of the five cichlid genomes to identify their OR repertoires as completely as possible. We used as bait a set of ORs described in the literature. The cichlid repertoires thereby extracted contained large numbers of complete genes (O. niloticus 158; H. burtoni 90; M. zebra 102; N. brichardi 69; P. nyererei 88), a small numbers of pseudogenes and many “edge genes” corresponding to incomplete genes located at the ends of contigs. A phylogenetic tree was constructed and showed these repertoires include a large number of families and subfamilies. It also allowed the identification of a large number of OR analogues between cichlids with very high amino-acid identity (≥99%). Nearly 9% of the full-length cichlid OR genes are composed of several coding exons. This is very unusual for vertebrate OR genes. Nevertheless, the evidence is strong, and includes the donor and acceptor splice junction sequences; also, the positions of these genes in the phylogenetic tree indicate that they constitute subfamilies well apart from non-OR G protein-coupled receptor families.

Conclusions

Cichlid OR repertoires are made up of a larger number of genes and fewer pseudogenes than those in other teleosts except zebrafish. These ORs share all identified properties common to all fish ORs; however, the large number of families and subfamilies, each containing few ORs implies that they have evolved more rapidly. This high level of OR diversity is consistent with the substantial phenotypic diversity that characterizes cichlids.

【 授权许可】

   
2014 Azzouzi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150630212907474.pdf 2106KB PDF download
Figure 5. 90KB Image download
Figure 4. 82KB Image download
Figure 3. 114KB Image download
Figure 2. 159KB Image download
Figure 1. 74KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Turner GF, Seehausen O, Knight ME, Allender CJ, Robinson RL: How many species of cichlid fishes are there in African lakes? Mol Ecol 2001, 10:793-806.
  • [2]Kocher TD: Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Genet 2004, 5:288-298.
  • [3]FAO: The State of World Fisheries and Aquaculture. 2010. http://www.fao.org/docrep/013/i1820e/i1820e00.htm webcite
  • [4]Brawand D, Wagner C, Li YI, Malinsky M, Keller I, Fan S, Simakov O, Ng AY, Wei Lim Z, Bezault E, Turner-Maier J, Johnson J, Alcazar R, Russell P, Aken B, Alföldi J, Amemiya C, Azzouzi N, Barollier JF, Barloy-Hubler F, Berlin A, Bloomquist R, Carleton KL, Conte MA, D'Cotta H, Eshel O, Gaffney L, Galibert F, Gante HF, Gnerre S, et al.: The genomic substrate for adaptive radiation: genomes of five African cichlid fish. Naturein press
  • [5]Buck L, Axel R: A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 1991, 65(1):175-187.
  • [6]Raming K, Krieger J, Strotmann J, Boekhoff I, Kubick S, Baumstark C, Breer H: Cloning and expression of odorant receptors. Nature 1993, 361(6410):353-356.
  • [7]Pace U, Hanski E, Salomon Y, Lancet D: Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature 1985, 316(6025):255-258.
  • [8]Bakalyar HA, Reed RR: Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 1990, 250(4986):1403-1406.
  • [9]Asanuma N, Nomura H: Cytochemical localization of adenylate cyclase activity in rat olfactory cells. Histochem J 1991, 23(2):83-90.
  • [10]Laberge F, Hara TJ: Neurobiology of fish olfaction: a review. Brain Res Rev 2001, 36:46-59.
  • [11]Godfrey PA, Malnic B, Buck LB: The mouse olfactory receptor gene family. Proc Natl Acad Sci USA 2004, 101:2156-2161.
  • [12]Malnic B, Godfrey PA, Buck LB: The human olfactory receptor gene family. Proc Natl Acad Sci USA 2004, 101(8):2584-2589.
  • [13]Quignon P, Giraud M, Rimbault M, Lavigne P, Tacher S, Morin E, Retout E, Valin AS, Lindblad-Toh K, Nicolas J, Galibert F: The dog and rat olfactory receptor repertoires. Genome Biol 2005, 6(10):R83. BioMed Central Full Text
  • [14]Mombaerts P: Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 2004, 5:263-278.
  • [15]Keller A, Vosshall LB: Better smelling through genetics: mammalian odor perception. Curr Opin Neurobiol 2008, 18:364-369.
  • [16]Hayden S, Bekaert M, Crider TA, Mariani S, Murphy WJ, Teeling EC: Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res 2010, 20:1-9.
  • [17]Niimura Y, Nei M: Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc Natl Acad Sci USA 2005, 102:6039-6044.
  • [18]Alioto TS, Ngai J: The odorant receptor repertoire of teleost fish. BMC Genomics 2005, 6:173. BioMed Central Full Text
  • [19]Glusman G, Bahar A, Sharon D, Pilpel Y, White J, Lancet D: The olfactory receptor gene superfamily: data mining, classification, and nomenclature. Mamm Genome 2000, 11(11):1016-1023.
  • [20]Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera , Holt RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, et al.: Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 2004, 428(6982):493-521.
  • [21]Zhang X, Rodriguez I, Mombaerts P, Firestein S: Odorant and vomeronasal receptor genes in two mouse genome assemblies. Genomics 2004, 83(5):802-811.
  • [22]Katoh K, Standley DM: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013, 30:772-780. http://mafft.cbrc.jp/alignment/server/ webcite
  • [23]PHYML http://www.trex.uqam.ca/ webcite
  • [24]Walker CE, Harmon LJ, Seechausen O: Ecological opportunity and sexual selection together predict adaptative radiation. Nature 2012, 487:366-370.
  • [25]Nikaido M, Suzuki H, Toyoda A, Fujiyama A, Hagino-Yamagishi K, Kocher TD, Carleton K, Okada N: Lineage-specific expansion of vomeronasal type 2 receptor-like (OlfC) genes in cichlids may contribute to diversification of amino acid detection systems. Genome Biol Evol 2013, 5(4):711-722.
  • [26]Zhang Z, Li J, Zhao XQ, Wang J, Wong GK, Yu J: KaKs Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics 2006, 4:259-263.
  • [27]Makalowski W, Bogulski MS: Evolutionary parameters of the transcribed mammalian genome: an analysis of 2,820 orthologous rodent and human sequences. Proc Natl Acad Sci USA 1998, 95(16):9407-9412.
  • [28]Kondo R, Kaneko S, Sun H, Sakaizumi M, Chigusa SI: Diversification of olfactory receptor genes in the Japanese medaka fish, Oryzias latipes. Gene 2002, 282:113-120.
  • [29]Gilad Y, Bustamante CD, Lancet D, Paabo S: Natural selection on the olfactory receptor gene family in humans and chimpanzees. Am J Hum Genet 2003, 73(3):489-501.
  • [30]Robin S, Tacher S, Rimbault M, Vaysse A, Dréano S, André C, Hitte C, Galibert F: Genetic diversity of canine olfactory receptors. BMC Genomics 2009, 10:21. BioMed Central Full Text
  • [31]MEME http://meme.nbcr.net/meme/cgi-bin/meme.cgi webcite
  • [32]Liu AH, Zhang X, Stolovitzky GA, Califano A, Firestein SJ: Motif-based construction of a functional map for mammalian olfactory receptors. Genomics 2003, 81:443-456.
  • [33]Zozulya S, Echeverri F, Nguyen T: The human olfactory receptor repertoire. Genome Biol 2001, 2(6):RESEARCH0018. Epub 2001 Jun 1
  • [34]PolyPhobius http://phobius.sbc.su.se/ webcite
  • [35]NetNGlycserver http://www.cbs.dtu.dk/services/NetNGlyc/ webcite
  • [36]Katada S, Tanaka M, Touhara K: Structural determinants for membrane trafficking and G protein selectivity of a mouse olfactory receptor. J Neurochem 2004, 90(6):1453-1463.
  • [37]Young JM, Friedman C, Williams EM, Ross JA, Tonnes-Priddy L, Trask BJ: Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Hum Mol Genet 2002, 11(5):535-546.
  • [38]Masters SB, Stroud RM, Bourne HR: Family of G protein alpha chains: amphipathic analysis and predicted structure of functional domains. Protein Eng 1986, 1(1):47-54.
  • [39]Zhao H, Firestein S: Vertebrate odorant receptors. Cell Mol Life Sci 1999, 56(7–8):647-659.
  • [40]Wahl MC, Will CL, Lührmann R: The spliceosome: design principles of a dynamic RNP machine. Cell 2009, 136(4):701-718.
  • [41]FSPLICE http://linux1.softberry.com/berry.phtml?topic=fsplice&group=programs&subgroup=gfind webcite
  • [42]FigTree 1.3.1 http://tree.bio.ed.ac.uk/software/figtree/ webcite
  • [43]Barber RD, Ronnet GV: Reconstructing smell. Mol Neurobiol 2000, 21:161-173.
  • [44]Tiedge M, Richter T, Richter T: Importance of Cysteine Residues for the stability and Catalytic activity of Human Pancreatic Beta Cell Glucokinase. Arch Biochem Biophys 2000, 375(2):251-260.
  • [45]Chen ZW, Jiang CY, She Q, Liu SJ, Zhou PJ: Key role of cysteine residues in catalysis and subcellular localization of sulfur oxygenase-reductase of Acidianus tengchongensis. Appl Environ Microbiol 2005, 71(2):621-628.
  • [46]Abaffy T, Malhotra A, Luetje CW: The molecular basis for ligand specificity in a mouse olfactory receptor. J Biol Chem 2007, 282:1216-1224.
  • [47]Doszczak L, Kraft P, Weber HP, Bertermann R, Triller A, Hatt H, Tacke R: Prediction of perception: probing the hOR17-4 olfactory receptor model with silicon analogues of bourgeonal and lilial. Angew Chem Int 2007, 46:3367-3371.
  • [48]Niimura Y, Nei M: Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS One 2007, 2:e708.
  • [49]Dong D, He G, Zhang S, Zhang Z: Evolution of olfactory receptor genes in primates dominated by birth-and-death process. Genome Biol Evol 2009, 1:258-264.
  • [50]Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R: A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 1999, 96(5):725-736.
  • [51]Robertson HM: The large srh family of chemoreceptor genes in Caenorhabditis nematodes reveals processes of genome evolution involving large duplications and deletions and intron gains and losses. Genome Res 2000, 10(2):192-203.
  • [52]GENEIOUS http://www.geneious.com webcite
  • [53]TMHMM http://www.cbs.dtu.dk/services/TMHMM/ webcite
  文献评价指标  
  下载次数:72次 浏览次数:15次