期刊论文详细信息
BMC Systems Biology
The systems biology simulation core algorithm
Andreas Dräger5  Andreas Zell7  Hannes Planatscher2  Noriko Hiroi4  Nicolas Le Novère1  Nicolas Rodriguez3  Richard Adams8  Michael J Ziller6  Akira Funahashi4  Akito Tabira4  Alexander Dörr7  Roland Keller7 
[1] Babraham Institute, Babraham, Cambridge, UK;Present address: Natural and Medical Sciences Institute at the University of Tuebingen Reutlingen, Germany;European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK;Graduate School of Science and Technology, Keio University, Yokohama, Japan;Present address: University of California, San Diego, 417 Powell-Focht Bioengineering Hall 9500, Gilman Drive, La Jolla, CA 92093-0412, USA;Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA;Center for Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Tübingen, Germany;SynthSys Edinburgh, CH Waddington Building, University of Edinburgh, Edinburgh EH9 3JD, UK
关键词: Software engineering;    Numerical integration;    Ordinary differential equation systems;    Algorithms;    Simulation;    Mathematical modeling;    Biological networks;    Systems biology;   
Others  :  1142720
DOI  :  10.1186/1752-0509-7-55
 received in 2012-12-14, accepted in 2013-06-18,  发布年份 2013
PDF
【 摘 要 】

Background

With the increasing availability of high dimensional time course data for metabolites, genes, and fluxes, the mathematical description of dynamical systems has become an essential aspect of research in systems biology. Models are often encoded in formats such as SBML, whose structure is very complex and difficult to evaluate due to many special cases.

Results

This article describes an efficient algorithm to solve SBML models that are interpreted in terms of ordinary differential equations. We begin our consideration with a formal representation of the mathematical form of the models and explain all parts of the algorithm in detail, including several preprocessing steps. We provide a flexible reference implementation as part of the Systems Biology Simulation Core Library, a community-driven project providing a large collection of numerical solvers and a sophisticated interface hierarchy for the definition of custom differential equation systems. To demonstrate the capabilities of the new algorithm, it has been tested with the entire SBML Test Suite and all models of BioModels Database.

Conclusions

The formal description of the mathematics behind the SBML format facilitates the implementation of the algorithm within specifically tailored programs. The reference implementation can be used as a simulation backend for Java™-based programs. Source code, binaries, and documentation can be freely obtained under the terms of the LGPL version 3 from http://simulation-core.sourceforge.net webcite. Feature requests, bug reports, contributions, or any further discussion can be directed to the mailing list simulation-core-development@lists.sourceforge.net.

【 授权许可】

   
2013 Keller et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328132403774.pdf 681KB PDF download
Figure 8. 36KB Image download
Figure 7. 42KB Image download
Figure 6. 110KB Image download
Figure 5. 94KB Image download
Figure 4. 40KB Image download
Figure 3. 49KB Image download
Figure 2. 68KB Image download
Figure 1. 29KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Macilwain C: Systems biology: evolving into the mainstream. Cell 2011, 144(6):839-841. [http://dx.doi.org/10.1016/j.cell.2011.02.044 webcite]
  • [2]Holzhutter HG, Drasdo D, Preusser T, Lippert J, Henney AM: The virtual liver: a multidisciplinary, multilevel challenge for systems biology. Wiley Interdiscip Rev Syst Biol Med 2012, 4(3):221-235. [http://dx.doi.org/10.1002/wsbm.1158 webcite]
  • [3]Schulz M, Uhlendorf J, Klipp E, Liebermeister W: SBMLmerge, a system for combining biochemical network models. Genome Inform Ser 2006, 17:62-71.
  • [4]Klipp E, Liebermeister W, Helbig A, Kowald A, Schaber J: Systems biology standards—the community speaks. Nat Biotechnol 2007, 25(4):390-391. [http://dx.doi.org/10.1038/nbt0407-390 webcite]
  • [5]Chelliah V, Endler L, Juty N, Laibe C, Li C, Rodriguez N, Le Novere N: Data integration and semantic enrichment of systems biology models and simulations. In Data Integration in the Life Sciences Volume 5647 of Lecture Notes in Computer Science. Edited by Paton NW, Missier P, Hedeler C. Berlin, Heidelberg: Springer; 2009:5-15. [http://dx.doi.org/10.1007/978-3-642-02879-3_2 webcite]
  • [6]Liebermeister W, Krause F, Uhlendorf J, Lubitz T, Klipp E: SemanticSBML: a tool for annotating, checking, and merging of biochemical models in SBML format. In 3rd International Biocuration Conference. Nature Publishing Group; 2009. [http://dx.doi.org/10.1038/npre.2009.3093.1 webcite]
  • [7]Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JHS, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le NovereN, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Wagner JM, Forum S, Sakurada T: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003, 19(4):524-531. [http://bioinformatics.oxfordjournals.org/cgi/content/abstract/19/4/524 webcite]
  • [8]The Systems Biology Markup Language [http://sbml.org webcite]
  • [9]Lloyd CM, Halstead MDB, Nielsen PF: CellML: its future, present and past. Prog Biophys Mol Bio 2004, 85(2–3):433-450. [http://dx.doi.org/10.1016/j.pbiomolbio.2004.01.004 webcite]
  • [10]The CellML project [http://cellml.org webcite]
  • [11]Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novere N, Laibe C: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol 2010, 4:92. [http://dx.doi.org/10.1186/1752-0509-4-92 webcite] BioMed Central Full Text
  • [12]Lloyd CM, Lawson JR, Hunter PJ, Nielsen PF: The CellML Model Repository. Bioinformatics 2008, 24(18):2122-2123. [http://dx.doi.org/10.1093/bioinformatics/btn390 webcite]
  • [13]Bornstein BJ, Keating SM, Jouraku A, Hucka M: LibSBML: an API library for SBML. Bioinformatics 2008, 24(6):880-881. [http://dx.doi.org/10.1093/bioinformatics/btn051 webcite]
  • [14]Miller AK, Marsh J, Reeve A, Garny A, Britten R, Halstead M, Cooper J, Nickerson DP, Nielsen PF: An overview of the CellML API and its implementation. BMC Bioinformatics 2010, 11:178. [http://dx.doi.org/10.1186/1471-2105-11-178 webcite] BioMed Central Full Text
  • [15]Drager A, Rodriguez N, Dumousseau M, Dorr A, Wrzodek C, Le Novere N, Zell A, Hucka M: JSBML: a flexible Java library for working with SBML. Bioinformatics 2011, 27(15):2167-2168. [http://bioinformatics.oxfordjournals.org/content/27/15/2167 webcite]
  • [16]Hucka M, Finney A, Sauro H, Bolouri H: Systems Biology Markup Language (SBML) level 1: structures and facilities for basic model definitions. In Tech. rep., Systems Biology Workbench Development Group JST ERATO Kitano Symbiotic Systems Project Control and Dynamical Systems. CA USA: MC 107-81, California Institute of Technology, Pasadena; 2001.
  • [17]Hucka M, Finney A, Sauro H, Bolouri H: Systems Biology Markup Language (SBML) level 1: structures and facilities for basic model definitions. In Tech. Rep. 2, Systems Biology Workbench Development Group JST ERATO Kitano Symbiotic Systems Project Control and Dynamical Systems, MC 107-81. CA USA: California Institute of Technology, Pasadena; 2003.
  • [18]Finney A, Hucka M: Systems Biology Markup Language (SBML) level 2: structures and facilities for model definitions. In Tech. rep., Systems Biology Workbench Development Group JST ERATO Kitano Symbiotic Systems Project Control and Dynamical Systems, MC 107-81. California Institute of Technology; 2003.
  • [19]Finney A, Hucka M, Le Novere N: Systems Biology Markup Language (SBML) level 2: structures and facilities for model definitions. Tech. rep 2006.
  • [20]Hucka M, Finney AM, Hoops S, Keating SM, Le Novere N: Systems Biology Markup Language (SBML) level 2: structures and facilities for model definitions. Tech. rep 2007.
  • [21]Hucka M, Finney A, Hoops S, Keating SM, Le Novere N: Systems biology markup language (SBML) Level 2: structures and facilities for model definitions. Tech. rep. Nature Precedings 2008. [http://dx.doi.org/10.1038/npre.2008.2715.1 webcite]
  • [22]Hucka M, Bergmann FT, Hoops S, Keating SM, Sahle S, Schaff JC, Smith L, Wilkinson DJ: The Systems Biology Markup Language (SBML): language specification for level 3 version 1 core. Tech. rep. Nature Precedings 2010. [http://precedings.nature.com/documents/4959/version/1 webcite]
  • [23]Cuellar A, Nielsen P, Halstead M, Bullivant D, Nickerson D, Hedley W, Nelson M, Lloyd C: CellML 1.1 Specification. In Tech. rep., Bioengineering Institute. University of Auckland; 2006. [http://www.cellml.org/specifications/cellml_1.1/ webcite]
  • [24]SBML Test Suite [http://sbml.org/Software/SBML_Test_Suite webcite]
  • [25]Bergmann FT, Sauro HM: Comparing simulation results of SBML capable simulators. Bioinformatics 2008, 24(17):1963-1965. [http://bioinformatics.oxfordjournals.org/cgi/content/abstract/24/17/1963 webcite]
  • [26]Waltemath D, Adams R, Bergmann FT, Hucka M, Kolpakov F, Miller AK, Moraru II, Nickerson D, Sahle S, Snoep JL, Le Novere N: Reproducible computational biology experiments with SED-ML–the Simulation Experiment Description Markup Language. BMC Syst Biol 2011, 5:198. [http://dx.doi.org/10.1186/1752-0509-5-198 webcite] BioMed Central Full Text
  • [27]Liebermeister W, Klipp E: Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model 2006, 3(42):41. [http://dx.doi.org/10.1186/1742-4682-3-41 webcite]
  • [28]Liebermeister W, Uhlendorf J, Klipp E: Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation. Bioinformatics 2010, 26(12):1528-1534. [http://dx.doi.org/10.1093/bioinformatics/btq141 webcite]
  • [29]Hopcroft JE, Karp RM: An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM J Comput 1973, 2(4):225-231. [http://dx.doi.org/10.1137/0202019 webcite]
  • [30]Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical Recipes in FORTRAN; The Art of Scientific Computing. New York: Cambridge University Press 1993.
  • [31]Drager A, Hassis N, Supper J, Schroder A, Zell A: SBMLsqueezer: a CellDesigner plug-in to generate kinetic rate equations for biochemical networks. BMC Syst Biol 2008, 2:39. [http://www.biomedcentral.com/1752-0509/2/39 webcite] BioMed Central Full Text
  • [32]Commons Math: The Apache Commons Mathematics Library [http://commons.apache.org/proper/commons-math/ webcite]
  • [33]Waltemath D, Adams R, Beard DA, Bergmann FT, Bhalla US, Britten R, Chelliah V, Cooling MT, Cooper J, Crampin EJ, Garny A, Hoops S, Hucka M, Hunter P, Klipp E, Laibe C, Miller AK, Moraru I, Nickerson D, Nielsen P, Nikolski M, Sahle S, Sauro HM, Schmidt H, Snoep JL, Tolle D, Wolkenhauer O, Le Novere N: Minimum Information About a Simulation Experiment (MIASE). PLoS Comput Biol 2011, 7(4):e1001122. [http://dx.doi.org/10.1371/journal.pcbi.1001122 webcite]
  • [34]Courtot M, Juty N, Knupfer C, Waltemath D, Zhukova A, Drager A, Dumontier M, Finney A, Golebiewski M, Hastings J, Hoops S, Keating S, Kell DB, Kerrien S, Lawson J, Lister A, Lu J, Machne R, Mendes P, Pocock M, Rodriguez N, Villeger A, Wilkinson DJ, Wimalaratne S, Laibe C, Hucka M, Le Novere N: Controlled vocabularies and semantics in systems biology. Mol Syst Biol 2011, 7:543. [http://dx.doi.org/10.1038/msb.2011.77 webcite]
  • [35]Wolf J, Passarge J, Somsen OJG, Snoep JL, Heinrich R, Westerhoff HV: Transduction of intracellular and intercellular dynamics in yeast glycolytic oscillations. Biophys J 2000, 78(3):1145-1153. [http://dx.doi.org/10.1016/S0006-3495(00)76672-0 webcite]
  • [36]Arnold A, Nikoloski Z: A quantitative comparison of Calvin-Benson cycle models. Trends Plant Sci 2011, 16(12):676-683. [http://dx.doi.org/10.1016/j.tplants.2011.09.004 webcite]
  • [37]Le Novere N, Bornsteinm BJ, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M: BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 2006, 34:D689-D691. [http://nar.oxfordjournals.org/cgi/content/full/34/suppl_1/D689 webcite]
  • [38]Hairer E, Norsett SP, Wanner G: Solving Ordinary Differential Equations. 1 Nonstiff Problems. Berlin: Springer; 2000.
  • [39]SBML Software Matrix (October 8th 2012) [http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix webcite]
  • [40]Kolpakov FA, Tolstykh NI, Valeev TF, Kiselev IN, Kutumova EO, Ryabova A, Yevshin IS, Kel AE: BioUML–open source plug-in based platform for bioinformatics: invitation to collaboration. In Moscow Conference on Computational Molecular Biology. Department of Bioengineering and Bioinformatics of MV Lomonosov Moscow State University; 2011:172-173. [http://mccmb.genebee.msu.ru/2011/mccmb11.pdf webcite]
  • [41]Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U: COPASI–a COmplex PAthway SImulator. Bioinformatics 2006, 22(24):3067-3074. [http://dx.doi.org/10.1093/bioinformatics/btl485 webcite]
  • [42]Myers CJ, Barker N, Jones K, Kuwahara H, Madsen C, Nguyen NPD: iBioSim: a tool for the analysis and design of genetic circuits. Bioinformatics 2009, 25(21):2848-2849. [http://dx.doi.org/10.1093/bioinformatics/btp457 webcite]
  • [43]Raymond GM, Butterworth E, Bassingthwaighte JB: JSIM: Free software package for teaching physiological modeling and research. Exp Biol 2003, 280:102-107.
  • [44]Takizawa H, Nakamura K, Tabira A, Chikahara Y, Matsui T, Hiroi N, Funahashi A: LibSBMLSim: A reference implementation of fully functional SBML simulator. Bioinformatics 2013. [http://dx.doi.org/10.1093/bioinformatics/btt157 webcite]
  • [45]Moraru II, Schaff JC, Slepchenko BM, Blinov ML, Morgan F, Lakshminarayana A, Gao F, Li Y, Loew LM: Virtual Cell modelling and simulation software environment. IET Syst Biol 2008, 2(5):352-362. [http://dx.doi.org/10.1049/iet-syb:20080102 webcite]
  • [46]Resasco DC, Gao F, Morgan F, Novak IL, Schaff JC, Slepchenko BM: Virtual Cell: computational tools for modeling in cell biology. Wiley Interdiscip Rev: Syst Biol Med 2012, 4(2):129-140. [http://dx.doi.org/10.1002/wsbm.165 webcite]
  • [47]SBML Test Suite Database—Test results for SBML-compatible software systems [http://sbml.org/Facilities/Database/Simulator webcite]
  • [48]Hettling H, van Beek: JHGM: Analyzing the functional properties of the creatine kinase system with multiscale ‘sloppy’ modeling. PLoS Comput Biol 2011, 7(8):e1002130. [http://dx.doi.org/10.1371/journal.pcbi.1002130 webcite]
  • [49]Kuhn C, Wierling C, Kühn A, Klipp E, Panopoulou G, Lehrach H, Poustka AJ: Monte Carlo analysis of an ODE model of the Sea Urchin Endomesoderm network. BMC Syst Biol 2009, 3(3):83. [http://dx.doi.org/10.1186/1752-0509-3-83 webcite]
  • [50]Fehlberg E: Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme. Computing 1970, 6(1–2):61-71. [http://dx.doi.org/10.1007/BF02241732 webcite]
  • [51]Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, Woodward CS: SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM T Math Software 2005, 31(3):363-396. [https://computation.llnl.gov/casc/sundials/documentation/documentation.html webcite]
  • [52]Madsen C, Myers CJ, Patterson T, Roehner N, Stevens JT, Winstead C: Design and test of genetic circuits using iBioSim. Design Test Comput, IEEE 2012, 29(3):32-39.
  • [53]Gauges R, Rost U, Sahle S, Wegner K: A model diagram layout extension for SBML. Bioinformatics 2006, 22(15):1879-1885. [http://bioinformatics.oxfordjournals.org/cgi/content/abstract/22/15/1879 webcite]
  • [54]Chaouiya C, Keating SM, Berenguier D, Naldi A, Thieffry D, van Iersel MP, Helicar T: Qualitative models. Tech. rep. 2013. [http://sbml.org/images/4/40/SBML-L3-qual-specification-2013-04-15.pdf webcite]
  • [55]Funahashi A, Tanimura N, Morohashi M, Kitano H: CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. BioSilico 2003, 1(5):159-162. [http://www.sciencedirect.com/science/article/B75GS-4BS08JD-5/2/5531c80ca62a425f55d224b8a0d3f702 webcite]
  • [56]SBMLsimulator—An efficient Java solver implementation for SBML [http://www.cogsys.cs.uni-tuebingen.de/software/SBMLsimulator webcite]
  • [57]Kotcon B, Mesuro S, Rozenfeld D, Yodpinyanee A: Final Report for Community of Ordinary Differential Equations Educators. In Harvey Mudd College Joint Computer Science and Mathematics Clinic. Claremont CA: 301 Platt Boulevard; 2011:91711-91711. [http://www.math.hmc.edu/clinic/projects/2010/ webcite]
  • [58]Java Resources for SED-ML [http://jlibsedml.sourceforge.net webcite]
  • [59]Tham LS, Wang L, Soo RA, Lee SC, Lee HS, Yong WP, Goh BC, Holford NHG: A pharmacodynamic model for the time course of tumor shrinkage by gemcitabine + carboplatin in non-small cell lung cancer patients. Clin Cancer Res 2008, 14(13):4213-4218. [http://dx.doi.org/10.1158/1078-0432.CCR-07-4754 webcite]
  • [60]Wajima T, Isbister GK, Duffull SB: A comprehensive model for the humoral coagulation network in humans. Clin Pharmacol Ther 2009, 86(3):290-298. [http://dx.doi.org/10.1038/clpt.2009.87 webcite]
  文献评价指标  
  下载次数:96次 浏览次数:37次