期刊论文详细信息
BMC Microbiology
Identification of a predicted partner-switching system that affects production of the gene transfer agent RcGTA and stationary phase viability in Rhodobacter capsulatus
Andrew S Lang2  Ryan G Mercer1 
[1] Current address: Department of Agricultural, Food and Nutritional Science, University of Alberta, 2-46 Agriculture Forestry Centre, Edmonton T6G 2P5, AB, Canada;Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s A1B 3X9, NL, Canada
关键词: Gene exchange;    Partner-switching;    Protein-protein interactions;    Gene expression;   
Others  :  1141645
DOI  :  10.1186/1471-2180-14-71
 received in 2013-10-10, accepted in 2014-03-12,  发布年份 2014
PDF
【 摘 要 】

Background

Production of the gene transfer agent RcGTA in the α-proteobacterium Rhodobacter capsulatus is dependent upon the response regulator protein CtrA. Loss of this regulator has widespread effects on transcription in R. capsulatus, including the dysregulation of numerous genes encoding other predicted regulators. This includes a set of putative components of a partner-switching signaling pathway with sequence homology to the σ-regulating proteins RsbV, RsbW, and RsbY that have been extensively characterized for their role in stress responses in gram-positive bacteria. These R. capsulatus homologues, RbaV, RbaW, and RbaY, have been investigated for their possible role in controlling RcGTA gene expression.

Results

A mutant strain lacking rbaW showed a significant increase in RcGTA gene expression and production. Mutation of rbaV or rbaY led to a decrease in RcGTA gene expression and production, and these mutants also showed decreased viability in the stationary phase and produced unusual colony morphologies. In vitro and in vivo protein interaction assays demonstrated that RbaW and RbaV interact. A combination of gene disruptions and protein-protein interaction assays were unsuccessful in attempts to identify a cognate σ factor, and the genetic data support a model where the RbaV protein that is the determinant regulator of RcGTA gene expression in this system.

Conclusions

These findings provide new information about RcGTA regulation by a putative partner-switching system and further illustrate the integration of RcGTA production into R. capsulatus physiology.

【 授权许可】

   
2014 Mercer and Lang; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327101632617.pdf 1482KB PDF download
Figure 8. 17KB Image download
Figure 7. 13KB Image download
Figure 6. 46KB Image download
Figure 5. 55KB Image download
Figure 4. 22KB Image download
Figure 3. 17KB Image download
Figure 2. 30KB Image download
Figure 1. 22KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Marrs BL: Genetic recombination in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 1974, 71:971-973.
  • [2]Lang AS, Zhaxybayeva O, Beatty JT: Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Micro 2012, 10:472-482.
  • [3]Leung MM, Brimacombe CA, Spiegelman GB, Beatty JT: The GtaR protein negatively regulates transcription of the gtaRI operon and modulates gene transfer agent (RcGTA) expression in Rhodobacter capsulatus. Mol Microbiol 2012, 83:759-774.
  • [4]Schaefer AL, Taylor TA, Beatty JT, Greenberg EP: Long-chain acyl-homoserine lactone quorum-sensing regulation of Rhodobacter capsulatus gene transfer agent production. J Bacteriol 2002, 184:6515-6521.
  • [5]Lang AS, Beatty JT: Genetic analysis of a bacterial genetic exchange element: the gene transfer agent of Rhodobacter capsulatus. Proc Natl Acad Sci USA 2000, 97:859-864.
  • [6]Mercer RG, Quinlan M, Rose AR, Noll S, Beatty JT, Lang AS: Regulatory systems controlling motility and gene transfer agent production and release in Rhodobacter capsulatus. FEMS Microbiol Lett 2012, 331:53-62.
  • [7]Lang AS, Beatty JT: A bacterial signal transduction system controls genetic exchange and motility. J Bacteriol 2002, 184:913-918.
  • [8]Mercer RG, Callister SJ, Lipton MS, Pasa-Tolic L, Strnad H, Paces V, Beatty JT, Lang AS: Loss of the response regulator CtrA causes pleiotropic effects on gene expression but does not affect growth phase regulation in Rhodobacter capsulatus. J Bacteriol 2010, 192:2701-2710.
  • [9]Belas R, Horikawa E, Aizawa S-I, Suvanasuthi R: Genetic Determinants of Silicibacter sp. TM1040 Motility. J Bacteriol 2009, 191:4502-4512.
  • [10]Greene SE, Brilli M, Biondi EG, Komeili A: Analysis of the CtrA pathway in Magnetospirillum reveals an ancestral role in motility in alphaproteobacteria. J Bacteriol 2012, 194:2973-2986.
  • [11]Miller TR, Belas R: Motility is involved in Silicibacter sp. TM1040 interaction with dinoflagellates. Environ Microbiol 2006, 8:1648-1659.
  • [12]Quon KC, Marczynski GT, Shapiro L: Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 1996, 84:83-93.
  • [13]Zan J, Heindl JE, Liu Y, Fuqua C, Hill RT: The CckA-ChpT-CtrA phosphorelay system is regulated by quorum sensing and controls flagellar motility in the marine sponge symbiont Ruegeria sp. KLH11. PLoS One 2013, 8:e66346.
  • [14]Strnad H, Lapidus A, Paces J, Ulbrich P, Vlcek C, Paces V, Haselkorn R: Complete genome sequence of the photosynthetic purple nonsulfur bacterium Rhodobacter capsulatus SB 1003. J Bacteriol 2010, 192:3545-3546.
  • [15]Hecker M, Pané-Farré J, Völker U: SigB-dependent general stress response in Bacillus subtilis and related gram-positive Bacteria. Annu Rev Microbiol 2007, 61:215-236.
  • [16]Mittenhuber G: A phylogenomic study of the general stress response sigma factor σB of Bacillus subtilis and its regulatory proteins. J Mol Microbiol Biotechnol 2002, 4:427-452.
  • [17]Wise AA, Price CW: Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor σB in response to environmental signals. J Bacteriol 1995, 177:123-133.
  • [18]Benson AK, Haldenwang WG: Bacillus subtilis σB is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase. Proc Natl Acad Sci USA 1993, 90:2330-2334.
  • [19]Dufour A, Haldenwang WG: Interactions between a Bacillus subtilis anti-σ factor (RsbW) and its antagonist (RsbV). J Bacteriol 1994, 176:1813-1820.
  • [20]Alper S, Duncan L, Losick R: An adenosine nucleotide switch controlling the activity of a cell type-specific transcription factor in B. subtilis. Cell 1994, 77:195-205.
  • [21]Zhang S, Haldenwang WG: Contributions of ATP, GTP, and redox state to nutritional stress activation of the Bacillus subtilis σB transcription factor. J Bacteriol 2005, 187:7554-7560.
  • [22]Yang X, Kang CM, Brody MS, Price CW: Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes Dev 1996, 10:2265-2275.
  • [23]Staroń A, Mascher T: General stress response in α-proteobacteria: PhyR and beyond. Mol Microbiol 2010, 78:271-277.
  • [24]Pané-Farré J, Lewis RJ, Stulke J: The RsbRST stress module in bacteria: a signalling system that may interact with different output modules. J Mol Microbiol Biotechnol 2005, 9:65-76.
  • [25]van Schaik W, Tempelaars MH, Zwietering MH, de Vos WM, Abee T: Analysis of the role of RsbV, RsbW, and RsbY in regulating σB activity in Bacillus cereus. J Bacteriol 2005, 187:5846-5851.
  • [26]de Been M, Tempelaars MH, van Schaik W, Moezelaar R, Siezen RJ, Abee T: A novel hybrid kinase is essential for regulating the σB-mediated stress response of Bacillus cereus. Environ Microbiol 2010, 12:730-745.
  • [27]Kim ES, Song JY, Kim DW, Chater KF, Lee KJ: A possible extended family of regulators of sigma factor activity in Streptomyces coelicolor. J Bacteriol 2008, 190:7559-7566.
  • [28]Kormanec J, Ševčíková B, Halgašová N, Knirschová R, Řežuchová B: Identification and transcriptional characterization of the gene encoding the stress-response σ factor σH in Streptomyces coelicolor A3(2). FEMS Microbiol Lett 2000, 189:31-38.
  • [29]Lee E-J, Cho Y-H, Kim H-S, Ahn B-E, Roe J-H: Regulation of σB by an anti- and an anti-anti-sigma factor in Streptomyces coelicolor in response to osmotic stress. J Bacteriol 2004, 186:8490-8498.
  • [30]Bhuwan M, Lee H-J, Peng H-L, Chang H-Y: Histidine-containing phosphotransfer protein-B (HptB) regulates swarming motility through partner-switching system in Pseudomonas aeruginosa PAO1 strain. J Biol Chem 2012, 287:1903-1914.
  • [31]Fernandez Martinez L, Bishop A, Parkes L, Del Sol R, Salerno P, Sevcikova B, Mazurakova V, Kormanec J, Dyson P: Osmoregulation in Streptomyces coelicolor: modulation of SigB activity by OsaC. Mol Microbiol 2009, 71:1250-1262.
  • [32]Morris AR, Visick KL: The response regulator SypE controls biofilm formation and colonization through phosphorylation of the syp-encoded regulator SypA in Vibrio fischeri. Mol Microbiol 2013, 87:509-525.
  • [33]Quin MB, Berrisford JM, Newman JA, Baslé A, Lewis RJ, Marles-Wright J: The bacterial stressosome: a modular system that has been adapted to control secondary messenger signaling. Structure 2012, 20:350-363.
  • [34]Parashar A, Colvin KR, Bignell DRD, Leskiw BK: BldG and SCO3548 interact antagonistically to control key developmental processes in Streptomyces coelicolor. J Bacteriol 2009, 191:2541-2550.
  • [35]Anthony JR, Newman JD, Donohue TJ: Interactions between the Rhodobacter sphaeroides ECF sigma factor, σE, and its anti-sigma factor, ChrR. J Mol Biol 2004, 341:345-360.
  • [36]Green HA, Donohue TJ: Activity of Rhodobacter sphaeroides RpoHII, a second member of the heat shock sigma factor family. J Bacteriol 2006, 188:5712-5721.
  • [37]Karls RK, Brooks J, Rossmeissl P, Luedke J, Donohue TJ: Metabolic roles of a Rhodobacter sphaeroides member of the σ32 family. J Bacteriol 1998, 180:10-19.
  • [38]MacGregor BJ, Karls RK, Donohue TJ: Transcription of the Rhodobacter sphaeroides cycA P1 promoter by alternate RNA polymerase holoenzymes. J Bacteriol 1998, 180:1-9.
  • [39]Nuss AM, Glaeser J, Berghoff BA, Klug G: Overlapping alternative sigma factor regulons in the response to singlet oxygen in Rhodobacter sphaeroides. J Bacteriol 2010, 192:2613-2623.
  • [40]Nuss AM, Glaeser J, Klug G: RpoHII activates oxidative-stress defense systems and is controlled by RpoE in the singlet oxygen-dependent response in Rhodobacter sphaeroides. J Bacteriol 2009, 191:220-230.
  • [41]Alias A, Cejudo FJ, Chabert J, Willison JC, Vignais PM: Nucleotide sequence of wild-type and mutant nifR4 (ntrA) genes of Rhodobacter capsulatus: identification of an essential glycine residue. Nucleic Acids Res 1989, 17:5377.
  • [42]Cullen PJ, Foster-Hartnett D, Gabbert KK, Kranz RG: Structure and expression of the alternative sigma factor, RpoN, in Rhodobacter capsulatus; physiological relevance of an autoactivated nifU2-rpoN superoperon. Mol Microbiol 1994, 11:51-65.
  • [43]Jones R, Haselkorn R: The DNA sequence of the Rhodobacter capsulatus ntrA, ntrB and ntrC gene analogs required for nitrogen fixation. Mol Gen Genet 1989, 215:507-516.
  • [44]Wall JD, Weaver PF, Gest H: Gene transfer agents, bacteriophages, and bacteriocins of Rhodopseudomonas capsulata. Arch Microbiol 1975, 105:217-224.
  • [45]Beatty JT, Gest H: Generation of succinyl-coenzyme A in photosynthetic bacteria. Arch Microbiol 1981, 129:335-340.
  • [46]Barany F: Single-stranded hexameric linkers: a system for in-phase insertion mutagenesis and protein engineering. Gene 1985, 37:111-123.
  • [47]Bollivar DW, Suzuki JY, Beatty JT, Dobrowski JM, Bauer CE: Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 1994, 237:622-640.
  • [48]Prentki P, Krisch HM: In vitro insertional mutagenesis with a selectable DNA fragment. Gene 1984, 29:303-313.
  • [49]Gill PR Jr, Warren GJ: An iron-antagonized fungistatic agent that is not required for iron assimilation from a fluorescent rhizosphere pseudomonad. J Bacteriol 1988, 170:163-170.
  • [50]Simon R, Priefer U, Pühler A: A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1983, 1:37-45.
  • [51]Wong DK-H, Collins WJ, Harmer A, Lilburn TG, Beatty JT: Directed mutagenesis of the Rhodobacter capsulatus puhA gene and pleiotropic effects on photosynthetic reaction center and light-harvesting I complexes. J Bacteriol 1996, 178:2334-2342.
  • [52]Chambers JM, Freeny AE, Heiberger RM: Analysis of Variance; Designed Experiments. In Statistical Models in S. Edited by Chambers JM, Hastie TJ. New York: Chapman & Hall; 1993:146-154.
  • [53]Fu Y, MacLeod D, Rivkin R, Chen F, Buchan A, Lang A: High diversity of Rhodobacterales in the subarctic North Atlantic Ocean and gene transfer agent protein expression in isolated strains. Aquat Microb Ecol 2010, 59:283-293.
  • [54]Adams CW, Forrest ME, Cohen SN, Beatty JT: Structural and functional analysis of transcriptional control of the Rhodobacter capsulatus puf operon. J Bacteriol 1989, 171:473-482.
  • [55]Miller JH: A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Plainview, NY: Cold Spring Harbor Laboratory Press; 1992.
  • [56]Karimova G, Pidoux J, Ullmann A, Ladant D: A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci USA 1998, 95:5752-5756.
  • [57]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [58]Imhoff JF, Madigan MT: International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of phototrophic bacteria. Minutes of the meetings, 27 August 2003, Tokyo, Japan. Int J Syst Evol Microbiol 2004, 54:1001-1003.
  • [59]Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Anderson I, Lykidis A, Mavromatis K, Ivanova NN, Kyrpides NC: The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res 2010, 38:D382-D390.
  • [60]Robison K, McGuire AM, Church GM: A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. J Mol Biol 1998, 284:241-254.
  • [61]Hynes AP, Mercer RG, Watton DE, Buckley CB, Lang AS: DNA packaging bias and differential expression of gene transfer agent genes within a population during production and release of the Rhodobacter capsulatus gene transfer agent, RcGTA. Mol Microbiol 2012, 85:314-325.
  • [62]Pasternak C, Chen W, Heck C, Klug G: Cloning, nucleotide sequence and characterization of the rpoD gene encoding the primary sigma factor of Rhodobacter capsulatus. Gene 1996, 176:177-184.
  • [63]Francez-Charlot A, Frunzke J, Reichen C, Ebneter JZ, Gourion B, Vorholt JA: Sigma factor mimicry involved in regulation of general stress response. Proc Natl Acad Sci USA 2009, 106:3467-3472.
  • [64]Kozak NA, Mattoo S, Foreman-Wykert AK, Whitelegge JP, Miller JF: Interactions between partner switcher orthologs BtrW and BtrV regulate type III secretion in Bordetella. J Bacteriol 2005, 187:5665-5676.
  • [65]Eymann C, Becher D, Bernhardt J, Gronau K, Klutzny A, Hecker M: Dynamics of protein phosphorylation on Ser/Thr/Tyr in Bacillus subtilis. Proteomics 2007, 7:3509-3526.
  • [66]Alvarez-Martinez CE, Lourenço RF, Baldini RL, Laub MT, Gomes SL: The ECF sigma factor σT is involved in osmotic and oxidative stress responses in Caulobacter crescentus. Mol Microbiol 2007, 66:1240-1255.
  • [67]Bastiat B, Sauviac L, Bruand C: Dual control of Sinorhizobium meliloti RpoE2 sigma factor activity by two PhyR-type two-component response regulators. J Bacteriol 2010, 192:2255-2265.
  • [68]Gourion B, Francez-Charlot A, Vorholt JA: PhyR is involved in the general stress response of Methylobacterium extorquens AM1. J Bacteriol 2008, 190:1027-1035.
  • [69]Gourion B, Sulser S, Frunzke J, Francez-Charlot A, Stiefel P, Pessi G, Vorholt JA, Fischer H-M: The PhyR-σEcfG signalling cascade is involved in stress response and symbiotic efficiency in Bradyrhizobium japonicum. Mol Microbiol 2009, 73:291-305.
  • [70]Sauviac L, Philippe H, Phok K, Bruand C: An extracytoplasmic function sigma factor acts as a general stress response regulator in Sinorhizobium meliloti. J Bacteriol 2007, 189:4204-4216.
  • [71]Emetz D, Klug G: Cloning and characterization of the rpoH gene of Rhodobacter capsulatus. Mol Gen Genet 1998, 260:212-217.
  • [72]Anthony JR, Green HA, Donohue TJ: Purification of Rhodobacter sphaeroides RNA polymerase and its sigma factors. Methods Enzymol 2003, 370:54-65.
  • [73]Newman JD, Falkowski MJ, Schilke BA, Anthony LC, Donohue TJ: The Rhodobacter sphaeroides ECF sigma factor, σE, and the target promoters cycA P3 and rpoE P1. J Mol Biol 1999, 294:307-320.
  • [74]Hofmann N, Wurm R, Wagner R: The E. coli anti-sigma factor Rsd: studies on the specificity and regulation of its expression. PLoS One 2011, 6:e19235.
  • [75]Bignell DRD, Warawa JL, Strap JL, Chater KF, Leskiw BK: Study of the bldG locus suggests that an anti-anti-sigma factor and an anti-sigma factor may be involved in Streptomyces coelicolor antibiotic production and sporulation. Microbiol 2000, 146:2161-2173.
  • [76]Westbye AB, Leung MM, Florizone SM, Taylor TA, Johnson JA, Fogg PC, Beatty JT: Phosphate concentration and the putative sensor kinase protein CckA modulate cell lysis and release of the Rhodobacter capsulatus gene transfer agent. J Bacteriol 2013, 195:5025-5040.
  文献评价指标  
  下载次数:25次 浏览次数:7次