期刊论文详细信息
BMC Genomics
Evaluation and optimisation of indel detection workflows for ion torrent sequencing of the BRCA1 and BRCA2 genes
Ann Siew Gek Lee1  Steven G Rozen2  Joshua Chee Leong Wong3  Zhen Xuan Yeo3 
[1] Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore;Centre for Computational Biology, Duke-NUS Graduate Medical School, Singapore, Singapore;Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
关键词: Workflow;    Variant calling;    Ion Torrent;    BRCA2;    BRCA1;    Next generation sequencing;    Indels;    Mutation detection;   
Others  :  857049
DOI  :  10.1186/1471-2164-15-516
 received in 2013-09-16, accepted in 2014-06-19,  发布年份 2014
PDF
【 摘 要 】

Background

The Ion Torrent PGM is a popular benchtop sequencer that shows promise in replacing conventional Sanger sequencing as the gold standard for mutation detection. Despite the PGM’s reported high accuracy in calling single nucleotide variations, it tends to generate many false positive calls in detecting insertions and deletions (indels), which may hinder its utility for clinical genetic testing.

Results

Recently, the proprietary analytical workflow for the Ion Torrent sequencer, Torrent Suite (TS), underwent a series of upgrades. We evaluated three major upgrades of TS by calling indels in the BRCA1 and BRCA2 genes. Our analysis revealed that false negative indels could be generated by TS under both default calling parameters and parameters adjusted for maximum sensitivity. However, indel calling with the same data using the open source variant callers, GATK and SAMtools showed that false negatives could be minimised with the use of appropriate bioinformatics analysis. Furthermore, we identified two variant calling measures, Quality-by-Depth (QD) and VARiation of the Width of gaps and inserts (VARW), which substantially reduced false positive indels, including non-homopolymer associated errors without compromising sensitivity. In our best case scenario that involved the TMAP aligner and SAMtools, we achieved 100% sensitivity, 99.99% specificity and 29% False Discovery Rate (FDR) in indel calling from all 23 samples, which is a good performance for mutation screening using PGM.

Conclusions

New versions of TS, BWA and GATK have shown improvements in indel calling sensitivity and specificity over their older counterpart. However, the variant caller of TS exhibits a lower sensitivity than GATK and SAMtools. Our findings demonstrate that although indel calling from PGM sequences may appear to be noisy at first glance, proper computational indel calling analysis is able to maximize both the sensitivity and specificity at the single base level, paving the way for the usage of this technology for future clinical genetic testing.

【 授权许可】

   
2014 Yeo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723063124969.pdf 830KB PDF download
108KB Image download
57KB Image download
132KB Image download
【 图 表 】

【 参考文献 】
  • [1]Chan M, Ji SM, Yeo ZX, Gan L, Yap E, Yap YS, Ng R, Tan PH, Ho GH, Ang P, Lee ASG: Development of a next-generation sequencing method for BRCA mutation screening: a comparison between a high-throughput and a benchtop platform. J Mol Diagn 2012, 14:602-612.
  • [2]Costa JL, Sousa S, Justino A, Kay T, Fernandes S, Cirnes L, Schmitt F, Machado JC: Nonoptical massive parallel DNA sequencing of BRCA1 and BRCA2 genes in a diagnostic setting. Hum Mutat 2013, 34:629-635.
  • [3]Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ: Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 2012, 30:434-439.
  • [4]Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y: A tale of three next generation sequencing platforms: comparison of ion torrent: pacific biosciences and illumina MiSeq sequencers. BMC Genomics 2012, 13:341.
  • [5]Jünemann S, Sedlazeck FJ, Prior K, Albersmeier A, John U, Kalinowski J, Mellmann A, Goesmann A, von Haeseler A, Stoye J, Harmsen D: Updating benchtop sequencing performance comparison. Nat Biotechnol 2013, 31:294-296.
  • [6]Yeo ZX, Chan M, Yap YS, Ang P, Rozen S, Lee ASG: Improving indel detection specificity of the ion torrent PGM benchtop sequencer. PLoS One 2012, 7:e45798.
  • [7]Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW, Davidson JF, Branting A, Nobile JR, Puc BP, Light D, Clark TA, Huber M, Branciforte JT, Stoner IB, Cawley SE, Lyons M, Fu Y, Homer N, Sedova M, Miao X, Reed B, et al.: An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011, 475:348-352.
  • [8]Vogel U, Szczepanowski R, Claus H, Jünemann S, Prior K, Harmsen D: Ion torrent personal genome machine sequencing for genomic typing of Neisseria meningitidis for rapid determination of multiple layers of typing information. J Clin Microbiol 2012, 50:1889-1894.
  • [9]Hadd AG, Houghton J, Choudhary A, Sah S, Chen L, Marko AC, Sanford T, Buddavarapu K, Krosting J, Garmire L, Wylie D, Shinde R, Beaudenon S, Alexander EK, Mambo E, Adai AT, Latham GJ: Targeted, high-depth, next-generation sequencing of cancer genes in formalin-fixed, paraffin-embedded and fine-needle aspiration tumor specimens. J Mol Diagn 2013, 15:234-247.
  • [10]Yousem SA, Dacic S, Nikiforov YE, Nikiforova M: Pulmonary langerhans cell histiocytosis: profiling of multifocal tumors using next-generation sequencing identifies concordant occurrence of BRAF V600E mutations. Chest 2013, 143:1679-1684.
  • [11]Elliott AM, Radecki J, Moghis B, Li X, Kammesheidt A: Rapid detection of the ACMG/ACOG-recommended 23 CFTR disease-causing mutations using ion torrent semiconductor sequencing. J Biomol Tech 2012, 23:24-30.
  • [12]Bragg LM, Stone G, Butler MK, Hugenholtz P, Tyson GW: Shining a light on dark sequencing: characterising errors in ion torrent PGM data. PLoS Comput Biol 2013, 9:e1003031.
  • [13]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25:2078-2079.
  • [14]Kim SY, Lohmueller KE, Albrechtsen A, Li Y, Korneliussen T, Tian G, Grarup N, Jiang T, Andersen G, Witte D, Jorgensen T, Hansen T, Pedersen O, Wang J, Nielsen R: Estimation of allele frequency and association mapping using next-generation sequencing data. BMC Bioinform 2011, 12:231.
  • [15]Chan M, Chan MW, Loh TW, Law HY, Yoon CS, Than SS, Chua JM, Wong CY, Yong WS, Yap YS, Ho GH, Ang P, Lee ASG: Evaluation of nanofluidics technology for high-throughput SNP genotyping in a clinical setting. J Mol Diagn 2011, 13:305-312.
  • [16]Li H, Durbin R: Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25:1754-1760.
  • [17]DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ: A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011, 43:491-498.
  • [18]Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 2008, 18:1851-1858.
  • [19]Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP: Integrative genomics viewer. Nat Biotech 2011, 29:24-26.
  • [20]Thorvaldsdóttir H, Robinson JT, Mesirov JP: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013, 14:178-192.
  • [21]Baker M: Next-generation sequencing: adjusting to data overload. Nat Meth 2010, 7:495-499.
  • [22]Li X, Buckton AJ, Wilkinson SL, John S, Walsh R, Novotny T, Valaskova I, Gupta M, Game L, Barton PJR, Cook SA, Ware JS: Towards clinical molecular diagnosis of inherited cardiac conditions: a comparison of bench-top genome DNA sequencers. PLoS One 2013, 8:e67744.
  • [23]Chin EL, Da Silva C, Hegde M: Assessment of clinical analytical sensitivity and specificity of next-generation sequencing for detection of simple and complex mutations. BMC Genet 2013, 14:6.
  • [24]Tsiatis AC, Norris-Kirby A, Rich RG, Hafez MJ, Gocke CD, Eshleman JR, Murphy KM: Comparison of sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations. J Mol Diagn 2010, 12:425-432.
  • [25]Harismendy O, Ng PC, Strausberg RL, Wang X, Stockwell TB, Beeson KY, Schork NJ, Murray SS, Topol EJ, Levy S, Frazer KA: Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biol 2009, 10:R32.
  文献评价指标  
  下载次数:54次 浏览次数:25次