期刊论文详细信息
BMC Cell Biology
Regulation of ROCK1 via Notch1 during breast cancer cell migration into dense matrices
Lilian Soon2  Erik W Thompson1  J Guy Lyons3  Hsin-Ya Chien4  Jifei Zhao4  Sandra Fok4  Vanisri Raviraj4 
[1] University of Melbourne Department of Surgery, St Vincent’s Hospital, Melbourne, Australia;ACMM, Madsen Building F09, Room 243, The University of Sydney, Sydney, NSW 2006, Australia;Dermatology, Central Clinical School, The University of Sydney, Sydney, NSW 2006, Australia;Australian Centre for Microscopy and Microanalysis (ACMM), AMMRF, The University of Sydney, Sydney, NSW 2006, Australia
关键词: Histone deacetylase inhibitors;    ROCK expression;    Cancer cell migration;    High-density matrix;    Breast cancer;   
Others  :  856983
DOI  :  10.1186/1471-2121-13-12
 received in 2011-07-19, accepted in 2012-02-15,  发布年份 2012
PDF
【 摘 要 】

Background

The behaviour of tumour cells depends on factors such as genetics and the tumour microenvironment. The latter plays a crucial role in normal mammary gland development and also in breast cancer initiation and progression. Breast cancer tissues tend to be highly desmoplastic and dense matrix as a pre-existing condition poses one of the highest risk factors for cancer development. However, matrix influence on tumour cell gene expression and behaviour such as cell migration is not fully elucidated.

Results

We generated high-density (HD) matrices that mimicked tumour collagen content of 20 mg/cm3 that were ~14-fold stiffer than low-density (LD) matrix of 1 mg/cm3. Live-cell imaging showed breast cancer cells utilizing cytoplasmic streaming and cell body contractility for migration within HD matrix. Cell migration was blocked in the presence of both the ROCK inhibitor, Y-27632, and the MMP inhibitor, GM6001, but not by the drugs individually. This suggests roles for ROCK1 and MMP in cell migration are complicated by compensatory mechanisms. ROCK1 expression and protein activity, were significantly upregulated in HD matrix but these were blocked by treatment with a histone deacetylase (HDAC) inhibitor, MS-275. In HD matrix, the inhibition of ROCK1 by MS-275 was indirect and relied upon protein synthesis and Notch1. Inhibition of Notch1 using pooled siRNA or DAPT abrogated the inhibition of ROCK1 by MS-275.

Conclusion

Increased matrix density elevates ROCK1 activity, which aids in cell migration via cell contractility. The upregulation of ROCK1 is epigenetically regulated in an indirect manner involving the repression of Notch1. This is demonstrated from inhibition of HDACs by MS-275, which caused an upregulation of Notch1 levels leading to blockade of ROCK1 expression.

【 授权许可】

   
2012 Raviraj et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723061137977.pdf 3043KB PDF download
36KB Image download
111KB Image download
49KB Image download
62KB Image download
81KB Image download
52KB Image download
120KB Image download
120KB Image download
【 图 表 】

【 参考文献 】
  • [1]Wiseman BS, Werb Z: Stromal effects on mammary gland development and breast cancer. Science 2002, 296(5570):1046-1049.
  • [2]Medina D: The mammary gland: a unique organ for the study of development and tumorigenesis. J Mammary Gland Biol Neoplasia 1996, 1(1):5-19.
  • [3]Kalluri R, Zeisberg M: Fibroblasts in cancer. Nat Rev Cancer 2006, 6(5):392-401.
  • [4]Patocs A, Zhang L, Xu Y, Weber F, Caldes T, Mutter GL, Platzer P, Eng C: Breast-cancer stromal cells with TP53 mutations and nodal metastases. N Engl J Med 2007, 357(25):2543-2551.
  • [5]Lin EY, Nguyen AV, Russell RG, Pollard JW: Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 2001, 193(6):727-740.
  • [6]Albini A, Tosetti F, Benelli R, Noonan DM: Tumor inflammatory angiogenesis and its chemoprevention. Cancer Res 2005, 65(23):10637-10641.
  • [7]Wellen KE, Hotamisligil GkS: Inflammation, stress, and diabetes. J Clin Investig 2005, 115(5):1111-1119.
  • [8]Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, et al.: Tensional homeostasis and the malignant phenotype. Cancer Cell 2005, 8(3):241-254.
  • [9]Kass L, Erler JT, Dembo M, Weaver VM: Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int J Biochem Cell Biol 2007, 39(11):1987-1994.
  • [10]Paszek M, Weaver V: The tension mounts: mechanics meets morphogenesis and malignancy. J Mammary Gland Biol Neoplasia 2004, 9(4):325-342.
  • [11]Wozniak MA, Desai R, Solski PA, Der CJ, Keely PJ: ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol 2003, 163(3):583-595.
  • [12]Ursin G, Hovanessian-Larsen L, Parisky YR, Pike MC, Wu AH: Greatly increased occurrence of breast cancers in areas of mammographically dense tissue. Breast Cancer Res 2005, 7(5):R605-608. BioMed Central Full Text
  • [13]Alowami S, Troup S, Al-Haddad S, Kirkpatrick I, Watson PH: Mammographic density is related to stroma and stromal proteoglycan expression. Breast Cancer Res 2003, 5(5):R129-135. BioMed Central Full Text
  • [14]Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ: Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 2006, 4(1):38. BioMed Central Full Text
  • [15]Friedl P, Wolf K: Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003, 3(5):362-374.
  • [16]Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P: Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 2003, 160(2):267-277.
  • [17]Wyckoff JB, Pinner SE, Gschmeissner S, Condeelis JS, Sahai E: ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr Biol 2006, 16(15):1515-1523.
  • [18]Friedl P, Borgmann S, Brocker EB: Amoeboid leukocyte crawling through extracellular matrix: lessons from the Dictyostelium paradigm of cell movement. J Leukoc Biol 2001, 70(4):491-509.
  • [19]Zaman MH, Trapani LM, Sieminski AL, MacKellar D, Gong H, Kamm RD, Wells A, Lauffenburger DA, Matsudaira P: Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci 2006, 103(29):10889-10894.
  • [20]Sabeh F, Ota I, Holmbeck K, Birkedal-Hansen H, Soloway P, Balbin M, Lopez-Otin C, Shapiro S, Inada M, Krane S, et al.: Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol 2004, 167(4):769-781.
  • [21]Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C, Stack MS, Friedl P: Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 2007, 9(8):893-904.
  • [22]Sahai E, Marshall CJ: Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 2003, 5(8):711-719.
  • [23]Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R, Hirsch K, Keller M, Forster R, Critchley DR, Fassler R, et al.: Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 2008, 453(7191):51-55.
  • [24]Gomez del Pulgar T, Benitah SA, Valeron PF, Espina C, Lacal JC: Rho GTPase expression in tumourigenesis: evidence for a significant link. Bioessays 2005, 27(6):602-613.
  • [25]Benitah SA, Valeron PF, van Aelst L, Marshall CJ, Lacal JC: Rho GTPases in human cancer: an unresolved link to upstream and downstream transcriptional regulation. Biochim Biophys Acta 2004, 1705(2):121-132.
  • [26]Wilkinson S, Paterson HF, Marshall CJ: Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nat Cell Biol 2005, 7(3):255-261.
  • [27]McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 2004, 6(4):483-495.
  • [28]Besseau L, Coulomb B, Lebreton-Decoster C, Giraud-Guille M-M: Production of ordered collagen matrices for three-dimensional cell culture. Biomaterials 2002, 23(1):27-36.
  • [29]Capaldi MJ, Chapman JA: The C-terminal extrahelical peptide of type I collagen and its role in fibrillogenesis in vitro. Biopolymers 1982, 21(11):2291-2313.
  • [30]Lo CM, Wang HB, Dembo M, Wang YL: Cell movement is guided by the rigidity of the substrate. Biophys J 2000, 79(1):144-152.
  • [31]Ilunga K, Nishiura R, Inada H, El-Karef A, Imanaka-Yoshida K, Sakakura T, Yoshida T: Co-stimulation of human breast cancer cells with transforming growth factor-beta and tenascin-C enhances matrix metalloproteinase-9 expression and cancer cell invasion. Int J Exp Pathol 2004, 85(6):373-379.
  • [32]Anderson RB: Matrix metalloproteinase-2 is involved in the migration and network formation of enteric neural crest-derived cells. Int J Dev Biol 2010, 54(1):63-69.
  • [33]Ruppender NS, Merkel AR, Martin TJ, Mundy GR, Sterling JA, Guelcher SA: Matrix rigidity induces osteolytic gene expression of metastatic breast cancer cells. PLoS One 2010, 5(11):e15451.
  • [34]Kim YB, Yu J, Lee SY, Lee MS, Ko SG, Ye SK, Jong HS, Kim TY, Bang YJ, Lee JW: Cell adhesion status-dependent histone acetylation is regulated through intracellular contractility-related signaling activities. J Biol Chem 2005, 280(31):28357-28364.
  • [35]Hu E, Dul E, Sung CM, Chen Z, Kirkpatrick R, Zhang GF, Johanson K, Liu R, Lago A, Hofmann G, et al.: Identification of novel isoform-selective inhibitors within class I histone deacetylases. J Pharmacol Exp Ther 2003, 307(2):720-728.
  • [36]Saito A, Yamashita T, Mariko Y, Nosaka Y, Tsuchiya K, Ando T, Suzuki T, Tsuruo T, Nakanishi O: A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci U S A 1999, 96(8):4592-4597.
  • [37]Suzuki T, Ando T, Tsuchiya K, Fukazawa N, Saito A, Mariko Y, Yamashita T, Nakanishi O: Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. J Med Chem 1999, 42(15):3001-3003.
  • [38]Ryan QC, Headlee D, Acharya M, Sparreboom A, Trepel JB, Ye J, Figg WD, Hwang K, Chung EJ, Murgo A, et al.: Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J Clin Oncol 2005, 23(17):3912-3922.
  • [39]Srivastava RK, Kurzrock R, Shankar S: MS-275 sensitizes TRAIL-resistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo. Mol Cancer Ther 2010, 9(12):3254-3266.
  • [40]Mongan NP, Gudas LJ: Valproic acid, in combination with all-trans retinoic acid and 5-aza-2′-deoxycytidine, restores expression of silenced RARbeta2 in breast cancer cells. Mol Cancer Ther 2005, 4(3):477-486.
  • [41]Cai FF, Kohler C, Zhang B, Wang MH, Chen WJ, Zhong XY: Epigenetic therapy for breast cancer. Int J Mol Sci 2011, 12(7):4465-4487.
  • [42]Fan S, Maguire CA, Ramirez SH, Bradel-Tretheway B, Sapinoro R, Sui Z, Chakraborty-Sett S, Dewhurst S: Valproic acid enhances gene expression from viral gene transfer vectors. J Virol Methods 2005, 125(1):23-33.
  • [43]Shabason JE, Tofilon PJ, Camphausen K: HDAC inhibitors in cancer care. Oncology (Williston Park) 2010, 24(2):180-185.
  • [44]Obrig TG, Culp WJ, McKeehan WL, Hardesty B: The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes. J Biol Chem 1971, 246(1):174-181.
  • [45]Lefort K, Mandinova A, Ostano P, Kolev V, Calpini V, Kolfschoten I, Devgan V, Lieb J, Raffoul W, Hohl D, et al.: Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev 2007, 21(5):562-577.
  • [46]Yugawa T, Handa K, Narisawa-Saito M, Ohno S, Fujita M, Kiyono T: Regulation of Notch1 gene expression by p53 in epithelial cells. Mol Cell Biol 2007, 27(10):3732-3742.
  • [47]Kim HG, Hwang SY, Aaronson SA, Mandinova A, Lee SW: DDR1 receptor tyrosine kinase promotes prosurvival pathway through Notch1 activation. J Biol Chem 2011, 286(20):17672-17681.
  • [48]Adler JT, Hottinger DG, Kunnimalaiyaan M, Chen H: Histone deacetylase inhibitors upregulate Notch-1 and inhibit growth in pheochromocytoma cells. Surgery 2008, 144(6):956-961. discussion 961–952
  • [49]Greenblatt DY, Cayo MA, Adler JT, Ning L, Haymart MR, Kunnimalaiyaan M, Chen H: Valproic acid activates Notch1 signaling and induces apoptosis in medullary thyroid cancer cells. Ann Surg 2008, 247(6):1036-1040.
  • [50]Rollins BJ, Stiles CD: Serum-inducible genes. Advances in Cancer Research 1989, 53:1-32. http://www.sciencedirect.com/science/article/pii/S0065230X08602778 webcite or http://www.ncbi.nlm.nih.gov/pubmed/2678945 webcite
  • [51]Angervo M, Leinonen P, Koistinen R, Julkunen M, Seppala M: Tri-iodothyronine and cycloheximide enhance insulin-like growth factor-binding protein-1 gene expression in human hepatoma cells. J Mol Endocrinol 1993, 10(1):7-13.
  • [52]Elder PK, Schmidt LJ, Ono T, Getz MJ: Specific stimulation of actin gene transcription by epidermal growth factor and cycloheximide. Proc Natl Acad Sci U S A 1984, 81(23):7476-7480.
  • [53]Clementz AG, Osipo C: Notch versus the proteasome: what is the target of gamma-secretase inhibitor-I? Breast Cancer Res 2009, 11(5):110. BioMed Central Full Text
  • [54]Lian JB, Morris S, Faris B, Albright J, Franzblau C: The effects of acetic acid and pepsin on the crosslinkages and ultrastructure of corneal collagen. Biochim Biophys Acta (BBA) - Protein Struct 1973, 328(1):193-204.
  • [55]Wolf K, Alexander S, Schacht V, Coussens LM, von Andrian UH, van Rheenen J, Deryugina E, Friedl P: Collagen-based cell migration models in vitro and in vivo. Semin Cell Dev Biol 2009, 20(8):931-941.
  • [56]Alexander NR, Branch KM, Parekh A, Clark ES, Iwueke IC, Guelcher SA, Weaver AM: Extracellular matrix rigidity promotes invadopodia activity. Curr Biol 2008, 18(17):1295-1299.
  • [57]Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall CJ: Rac activation and inactivation control plasticity of tumor cell movement. Cell 2008, 135(3):510-523.
  • [58]Falzon G, Pearson S, Murison R: Analysis of collagen fibre shape changes in breast cancer. Phys Med Biol 2008, 53(23):6641-6652.
  • [59]Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG, Keely PJ: Collagen density promotes mammary tumor initiation and progression. BMC Med 2008, 6:11. BioMed Central Full Text
  • [60]Gadea G, Sanz-Moreno V, Self A, Godi A, Marshall CJ: DOCK10-mediated Cdc42 activation is necessary for amoeboid invasion of melanoma cells. Curr Biol 2008, 18(19):1456-1465.
  • [61]Zhang Y, Reinberg D: Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 2001, 15(18):2343-2360.
  • [62]Kouzarides T: Histone methylation in transcriptional control. Curr Opin Genet Dev 2002, 12(2):198-209.
  • [63]Amano M, Chihara K, Nakamura N, Kaneko T, Matsuura Y, Kaibuchi K: The COOH terminus of Rho-kinase negatively regulates rho-kinase activity. J Biol Chem 1999, 274(45):32418-32424.
  • [64]Leung T, Chen XQ, Manser E, Lim L: The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol 1996, 16(10):5313-5327.
  • [65]Riento K, Ridley AJ: Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 2003, 4(6):446-456.
  • [66]Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, et al.: Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 1996, 273(5272):245-248.
  • [67]Mumm JS, Kopan R: Notch signaling: from the outside in. Dev Biol 2000, 228(2):151-165.
  • [68]Lai EC: Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins. EMBO Rep 2002, 3(9):840-845.
  • [69]Petcherski AG, Kimble J: Mastermind is a putative activator for Notch. Curr Biol 2000, 10(13):R471-473.
  • [70]Iso T, Kedes L, Hamamori Y: HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 2003, 194(3):237-255.
  • [71]Nervi C, Borello U, Fazi F, Buffa V, Pelicci PG, Cossu G: Inhibition of histone deacetylase activity by trichostatin A modulates gene expression during mouse embryogenesis without apparent toxicity. Cancer Res 2001, 61(4):1247-1249.
  文献评价指标  
  下载次数:33次 浏览次数:8次