期刊论文详细信息
BMC Genomics
Characterisation and expression profile of the bovine cathelicidin gene repertoire in mammary tissue
Cliona O’Farrelly1  Andrew T Lloyd2  Fernando Narciandi1  Aspinas Chapwanya4  P David Eckersall3  Kieran G Meade5  Anne Barry-Reidy1  Cormac J Whelehan1 
[1]Comparative Immunology Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
[2]Current address: Department of Science and Health, Carlow Institute of Technology, Kilkenny Road, Carlow, Ireland
[3]Division of Animal Production and Public Health, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow G611QH, UK
[4]Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
[5]Animal & Bioscience Research Department, Teagasc, Grange, Co Meath, Ireland
关键词: Tissue expression;    Locus;    Gene cluster;    Hidden Markov Model (HMM);    Cathelicidin;   
Others  :  1217880
DOI  :  10.1186/1471-2164-15-128
 received in 2013-01-03, accepted in 2014-02-04,  发布年份 2014
PDF
【 摘 要 】

Background

Cathelicidins comprise a major group of host-defence peptides. Conserved across a wide range of species, they have several functions related to host defence. Only one cathelicidin has been found in humans but several cathelicidin genes occur in the bovine genome. We propose that these molecules may have a protective role against mastitis. The aim of this study was to characterise the cathelicidin gene-cluster in the bovine genome and to identify sites of expression in the bovine mammary gland.

Results

Bioinformatic analysis of the bovine genome (BosTau7) revealed seven protein-coding cathelicidin genes, CATHL1-7, including two identical copies of CATHL4, as well as three additional putative cathelicidin genes, all clustered on the long arm of chromosome 22. Six of the seven protein-coding genes were expressed in leukocytes extracted from milk of high somatic cell count (SCC) cows. CATHL5 was expressed across several sites in the mammary gland, but did not increase in response to Staphylococcus aureus infection.

Conclusions

Here, we characterise the bovine cathelicidin gene cluster and reconcile inconsistencies in the datasets of previous studies. Constitutive cathelicidin expression in the mammary gland suggests a possible role for these host defence peptides its protection.

【 授权许可】

   
2014 Whelehan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150709014206337.pdf 3303KB PDF download
Figure 6. 54KB Image download
Figure 5. 22KB Image download
Figure 4. 226KB Image download
Figure 3. 163KB Image download
Figure 2. 49KB Image download
Figure 1. 177KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Uzzell T, Stolzenberg ED, Shinnar AE, Zasloff M: Hagfish intestinal antimicrobial peptides are ancient cathelicidins. Peptides 2003, 24:1655-1667.
  • [2]Hao X, Yang H, Wei L, Yang S, Zhu W, Ma D, Yu H, Lai R: Amphibian cathelicidin fills the evolutionary gap of cathelicidin in vertebrate. Amino Acids 2012, 43:677-685.
  • [3]Chang C-I, Pleguezuelos O, Zhang Y-A, Zou J, Secombes CJ: Identification of a novel cathelicidin gene in the rainbow trout, Oncorhynchus mykiss. Infect Immun 2005, 73:5053-5064.
  • [4]Lynn DJ, Higgs R, Gaines S, Tierney J, James T, Lloyd AT, Fares MA, Mulcahy G, O’Farrelly C: Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics 2004, 56:170-177.
  • [5]Zhao H, Gan T-X, Liu X-D, Jin Y, Lee W-H, Shen J-H, Zhang Y: Identification and characterization of novel reptile cathelicidins from elapid snakes. Peptides 2008, 29:1685-1691.
  • [6]Leonard BC, Chu H, Johns JL, Gallo RL, Moore PF, Marks SL, Bevins CL: Expression and activity of a novel cathelicidin from domestic cats. PLoS One 2011, 6:e18756.
  • [7]Zanetti M: The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 2005, 7:179-196.
  • [8]Brogden KA: Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Micro 2005, 3:238-250.
  • [9]Lai Y, Gallo RL: AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 2009, 30:131-141.
  • [10]Wuerth K, Hancock REW: New insights into cathelicidin modulation of adaptive immunity. Eur J Immunol 2011, 41:2817-2819.
  • [11]De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O: LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 2000, 192:1069-1074.
  • [12]Zanetti M, Gennaro R, Romeo D: Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 1995, 374:1-5.
  • [13]Ritonja A, Kopitar M, Jerala R, Turk V: Primary structure of a new cysteine proteinase inhibitor from pig leucocytes. FEBS Lett 1989, 255:211-214.
  • [14]Zaiou M, Gallo RL: Cathelicidins, essential gene-encoded mammalian antibiotics. J Mol Med 2002, 80:549-561.
  • [15]Tomasinsig L, Zanetti M: The cathelicidins- structure, function and evolution. Cur Protein Pept Sci 2005, 6:23-34.
  • [16]Zanetti M: Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 2004, 75:39-48.
  • [17]Romeo D, Skerlavaj B, Bolognesi M, Gennaro R: Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J Biol Chem 1988, 263:9573-9575.
  • [18]Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, Cullor JS: Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 1992, 267:4292-4295.
  • [19]van Abel RJ, Tang YQ, Rao VS, Dobbs CH, Tran D, Barany G, Selsted ME: Synthesis and characterization of indolicidin, a tryptophan-rich antimicrobial peptide from bovine neutrophils. Int J Pept Protein Res 1995, 45:401-409.
  • [20]Zanetti M, Del Sal G, Storici P, Schneider C, Romeo D: The cDNA of the neutrophil antibiotic Bac5 predicts a pro-sequence homologous to a cysteine proteinase inhibitor that is common to other neutrophil antibiotics. J Biol Chem 1993, 268:522-526.
  • [21]Gennaro R, Skerlavaj B, Romeo D: Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun 1989, 57:3142-3146.
  • [22]Storici P, Del Sal G, Schneider C, Zanetti M: cDNA sequence analysis of an antibiotic dodecapeptide from neutrophils. FEBS Lett 1992, 314:187-190.
  • [23]Scocchi M, Wang S, Zanetti M: Structural organization of the bovine cathelicidin gene family and identification of a novel member. FEBS Lett 1997, 417:311-315.
  • [24]Tomasinsig L, De Conti G, Skerlavaj B, Piccinini R, Mazzilli M, D’Este F, Tossi A, Zanetti M: Broad-spectrum activity against bacterial mastitis pathogens and activation of mammary epithelial cells support a protective role of neutrophil cathelicidins in bovine mastitis. Infect Immun 2010, 78:1781-1788.
  • [25]Di Nardo A, Vitiello A, Gallo RL: Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J Immunol 2003, 170:2274-2278.
  • [26]Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH: FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci 1995, 92:195-199.
  • [27]Cowland JB, Johnsen AH, Borregaard N: hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett 1995, 368:173-176.
  • [28]Koon HW, Shih DQ, Chen J, Bakirtzi K, Hing TC, Law I, Ho S, Ichikawa R, Zhao D, Xu H, Gallo R, Dempsey P, Cheng G, Targan SR, Pothoulakis C: Cathelicidin Signaling via the Toll-like receptor protects against colitis in mice. Gastroenterology 2011, 141:1852.e3-1863.e3.
  • [29]Murakami M, Lopez-Garcia B, Braff M, Dorschner RA, Gallo RL: Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 2004, 172:3070-3077.
  • [30]Malm J, Sørensen O, Persson T, Frohm-Nilsson M, Johansson B, Bjartell A, Lilja H, Ståhle-Bäckdahl M, Borregaard N, Egesten A: The human cationic antimicrobial protein (hCAP-18) is expressed in the epithelium of human epididymis, is present in seminal plasma at high concentrations, and is attached to spermatozoa. Infect Immun 2000, 68:4297-4302.
  • [31]Bals R, Wang X, Zasloff M, Wilson J: The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci USA 1998, 95:9541-9546.
  • [32]Hase K, Eckmann L, Leopard JD, Varki N, Kagnoff MF: Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect Immun 2002, 70:953-963.
  • [33]Murakami M, Dorschner R, Stern L, Lin K, Gallo R: Expression and secretion of cathelicidin antimicrobial peptides in murine mammary glands and human milk. Pediatr Res 2005, 57:10-15.
  • [34]Zasloff M: Defending the epithelium. Nature Med 2006, 12:607-608.
  • [35]Sequencing TBG, Consortium A, Elsik CG, Tellam RL, Worley KC: The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 2009, 324:522-528.
  • [36]Dawson HD, Loveland JE, Pascal G, Gilbert JGR, Uenishi H, Mann KM, Sang Y, Zhang J, Carvalho-Silva D, Hunt T, Hardy M, Hu Z, Zhao SH, Anselmo A, Shinkai H, Chen C, Badaoui B, Berman D, Amid C, Kay M, Lloyd D, Snow C, Morozumi T, Cheng RPY, Bystrom M, Kapetanovic R, Schwartz JC, Kataria R, Astley M, Fritz E, Steward C, Thomas M, Wilming L, Toki D, Archibald AL, Bed’Hom B, Beraldi D, Huang TH, Ait-Ali T, Blecha F, Botti S, Freeman TC, Giuffra E, Hume DA, Lunney JK, Murtaugh MP, Reecy JM, Harrow JL, Rogel-Gaillard C, Tuggle CK: Structural and functional annotation of the porcine immunome. BMC Genom 2013, 14:332. BioMed Central Full Text
  • [37]Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [38]Eddy SR: Profile hidden Markov models. Bioinformatics 1998, 14:755-763.
  • [39]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [40]Childers CP, Reese JT, Sundaram JP, Vile DC, Dickens CM, Childs KL, Salih H, Bennett AK, Hagen DE, Adelson DL, Elsik CG: Bovine Genome Database: integrated tools for genome annotation and discovery. Nucleic Acids Res 2011, 39:D830-D834.
  • [41]Gennaro R, Scocchi M, Skerlavaj B, Tossi A, Romeo D: Synthetic approach to the identification of the antibacterial domain of bactenecins, Pro/Arg-rich peptides from bovine neutrophils. In Peptides: Chemistry, Structure and Biology: Proceedings of the Thirteenth American Peptide Symposium: 20-25 June 1993; Edmonton. Edited by Hodges RS, Smith JA. Leiden: ESCOM; 1994:461-463.
  • [42]Scocchi M, Wang S, Gennaro R, Zanetti M: Cloning and analysis of a transcript derived from two contiguous genes of the cathelicidin family. Biochim Biophys Acta 1998, 1398:393-396.
  • [43]Thomas L, Haider W, Hill A, Cook R: Pathologic findings of experimentally induced Streptococcus uberis infection in the mammary gland of cows. Am J Vet Res 1994, 55:1723.
  • [44]Pryor SM, Smolenski GA, Wieliczko RJ, Broadhurst MK, Stelwagen K, Wheeler TT, Haigh BJ: Cathelicidin levels in milk from cows infected with a range of mastitis causing pathogens. Proc New Zeal Soc An 2010, 70:243-245.
  • [45]Smolenski G, Wieliczko R, Pryor S, Broadhurst M, Wheeler T, Haigh B: The abundance of milk cathelicidin proteins during bovine mastitis. Vet Immunol Immunopathol 2011, 143:125-130.
  • [46]Whelehan CJ, Meade KG, Eckersall DP, Young FJ, O’Farrelly C: Experimental Staphylococcus aureus infection of the mammary gland induces region-specific changes in innate immune gene expression. Vet Immunol Immunopathol 2011, 140:181-189.
  • [47]Burge C, Karlin S: Prediction of complete gene structures in human genomic DNA. J Mol Biol 1997, 268:78-94.
  • [48]Darriba D, Taboada GL, Doallo R, Posada D: jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012, 9:772.
  • [49]Ulmer A, Scholz W, Ernst M, Brandt E, Flad HD: Isolation and subfractionation of human peripheral blood mononuclear cells (PBMC) by density gradient centrifugation on Percoll. Immunobiology 1984, 166:238-250.
  • [50]Eckersall PD, Young FJ, Nolan AM, Knight CH, McComb C, Waterston MM: Acute phase proteins in bovine milk in an experimental model of Staphylococcus aureus subclinical mastitis. J Dairy Sci 2006, 89:1488-1501.
  • [51]Piepers S, De Vliegher S, Demeyere K, Lambrecht BN, de Kruif A, Opsomer G: Technical note: Flow cytometric identification of bovine milk neutrophils and simultaneous quantification of their viability. J Dairy Sci 2009, 92:626-631.
  • [52]Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008, 3:1101-1108.
  • [53]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3:7.
  文献评价指标  
  下载次数:48次 浏览次数:13次