期刊论文详细信息
BMC Genomics
Proteomics analysis reveals protein expression differences for hypopharyngeal gland activity in the honeybee, Apis mellifera carnica Pollmann
Miguel Corona1  Guohong Chen4  Liming Wu2  Qin Liang3  Fang Shen4  Jie Shen4  Zhenguo Liu4  Ting Ji4 
[1] USDA-ARS Bee Research Laboratory, Beltsville, MD, USA;Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing, China;College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China;College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
关键词: Secreted protein;    iTRAQ;    Quantitative proteomics;    Hypopharyngeal gland;   
Others  :  1216284
DOI  :  10.1186/1471-2164-15-665
 received in 2014-03-08, accepted in 2014-07-30,  发布年份 2014
PDF
【 摘 要 】

Background

Most of the proteins contained in royal jelly (RJ) are secreted from the hypopharyngeal glands (HG) of young bees. Although generic protein composition of RJ has been investigated, little is known about how age-dependent changes on HG secretion affect RJ composition and their biological consequences. In this study, we identified differentially expressed proteins (DEPs) during HG development by using the isobaric tag for relative and absolute quantification (iTRAQ) labeling technique. This proteomic method increases the potential for new protein discovery by improving the identification of low quantity proteins.

Results

A total of 1282 proteins were identified from five age groups of worker bees, 284 of which were differentially expressed. 43 (15.1%) of the DEPs were identified for the first time. Comparison of samples at day 6, 9, 12, and 16 of development relative to day 3 led to the unambiguous identification of 112, 117, 127, and 127 DEPs, respectively. The majority of these DEPs were up-regulated in the older worker groups, indicating a substantial change in the pattern of proteins expressed after 3 days. DEPs were identified among all the age groups, suggesting that changes in protein expression during HG ontogeny are concomitant with different states of worker development. A total of 649 proteins were mapped to canonical signaling pathways found in the Kyoto Encyclopedia of Genes and Genomes (KEGG), which were preferentially associated with metabolism and biosynthesis of secondary metabolites. More than 10 key high-abundance proteins were involved in signaling pathways related to ribosome function and protein processing in the endoplasmic reticulum. The results were validated by qPCR.

Conclusion

Our approach demonstrates that HG experienced important changes in protein expression during its ontogenic development, which supports the secretion of proteins involved in diverse functions in adult workers beyond its traditional role in royal jelly production.

【 授权许可】

   
2014 Ji et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150629211229220.pdf 3103KB PDF download
Figure 6. 50KB Image download
Figure 5. 106KB Image download
Figure 4. 121KB Image download
Figure 3. 93KB Image download
Figure 2. 145KB Image download
Figure 1. 120KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Bogdanov S, Jurendic T, Sieber R, Gallmann P: Honey for nutrition and health: a review. J Am Coll Nutr 2008, 27(6):677-689.
  • [2]Li J, Feng M, Zhang Z, Pan Y: Identification of the proteome complement of hypopharyngeal glands from two strains of honeybees (Apis mellifera). Apidologie 2008, 39:199-214.
  • [3]Deseyn J, Billen J: Age-dependent morphology and ultrastructure of the hypopharyngeal gland of Apis mellifera workers (Hymenoptera, Apidae). Apidologie 2005, 36(1):49-57.
  • [4]Ohashi K, Natori S, Kubo T: Change in the mode of gene expression of the hypopharyngeal gland cells with an age-dependent role change of the worker honeybee Apis mellifera L. Eur J Biochem 1997, 249(3):797-802.
  • [5]Štefan A, Johannes S, Kornelia G, Wolfgang R: Royal jelly-like protein localization reveals differences in hypopharyngeal glands buildup and conserved expression pattern in brains of bumblebees and honeybees. Biol Open 2014, 3(4):281-288.
  • [6]Feng M, Fang Y, Li J: Proteomic analysis of honeybee worker (Apis mellifera) hypopharyngeal gland development. BMC Genomics 2009, 10:645.
  • [7]Ramadan M, Ghamdi A: Bioactive compounds and health-promoting properties of royal jelly: a review. J Funct Foods 2012, 4:39-52.
  • [8]Takenata T: Chemical composition of royal jelly. Honeybee Sci 1982, 3:69-74.
  • [9]Sabatini A, Marcazzan G, Caboni M, Bogdanov S, Almeida-Muradian L: Quality and standardisation of Royal Jelly. J ApiProd ApiMed Sci 2009, 1(1):1-6.
  • [10]Bogdanov S: Royal Jelly, Bee Brood: composition, health, medicine: a review. Bee Prod Sci 2012, 12:1-30.
  • [11]Bărnuţiu LI, Mărghitaş LA, Dezmirean DS, Mihai CM, Bobiş O: Chemical composition and antimicrobial activity of Royal Jelly - REVIEW. Scientif Pap: Anim Sci Biotechnol 2011, 44(2):67-72.
  • [12]Fujita T, Kozuka-Hata H, Ao-Kondo H, Kunieda T, Oyama M, Kubo T: Proteomic analysis of the royal jelly and characterization of the functions of its derivation glands in the honeybee. J Proteome Res 2013, 12(1):404-411.
  • [13]Patel N, Haydak MH, Gochnauer TA: Electrophoretic components of the proteins in the honey bee larvae food. Nature 1960, 186:633-634.
  • [14]Schmitzová J, Klaudiny J, Albert S, Schröder W, Schreckengost W, Hanes J, Júdová J, Simúth J: A family of major royal jelly proteins of the honeybee Apis mellifera L. Cell Mol Life Sci 1998, 54(9):1020-1030.
  • [15]Simúth J: Some properties of the main protein of honeybee (Apis mellifera) royal jelly. Apidology 2001, 32(1):69-80.
  • [16]Matsui T, Yukiyoshi A, Doi S, Sugimoto H, Yamada H, Matsumoto K: Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their antihypertensive ability in SHR. J Nutr Biochem 2002, 13(2):80-86.
  • [17]Kramer K, Tager HS, Childs CN, Speirs RD: Insulin-like hypoglycemic and mmunological activities in honeybee royal jelly. J Insect Physiol 1977, 23(2):293-295.
  • [18]Moutsatsou P, Papoutsi Z, Kassi E, Heldring N, Zhao C, Tsiapara A, Melliou E, Chrousos GP, Chinou I, Karshikoff A, Nilsson L, Dahlman-Wright K: Fatty acids derived from royal jelly are modulators of estrogen receptor functions. PLoS One 2010, 5(12):e15594.
  • [19]Nesvizhskii AI, Vitek O, Aebersold R: Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Methods 2007, 4(10):787-797.
  • [20]Wu WW, Wang G, Baek SJ, Shen RF: Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 2006, 5(3):651-658.
  • [21]Li JK, Feng M, Zhang L, Zhang ZH, Pan YH: Proteomics analysis of major royal jelly protein changes under different storage conditions. J Proteome Res 2008, 7(8):3339-3353.
  • [22]Righetti PG, Castagna A, Antonucci F, Piubelli C, Cecconi D, Campostrini N, Antonioli P, Astner H, Hamdan M: Critical survey of quantitative proteomics in two-dimensional electrophoretic approaches. J Chromatogr A 2004, 1051(1–2):3-17.
  • [23]Zieske LR: A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. J Exp Bot 2006, 57(7):1501-1508.
  • [24]Yang LT, Qi YP, Lu YB, Guo P, Sang W, Feng H, Zhang HX, Chen LS: iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency. J Proteomics 2013, 20(93):179-206.
  • [25]Lan P, Li W, Wen TN, Shiau JY, Wu YC, Lin W, Schmidt W: iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis. Plant Physiol 2011, 155(2):821-834.
  • [26]Mertins P, Udeshi ND, Clauser KR, Mani DR, Patel J, Ong SE, Jaffe JD, Carr SA: iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics. Mol Cell Proteomics 2012, 11(6):M111 014423.
  • [27]Kim PD, Patel BB, Yeung AT: Isobaric labeling and data normalization without requiring protein quantitation. J Biomol Tech 2012, 23(1):11-23.
  • [28]Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ: Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004, 3(12):1154-1169.
  • [29]Zhang PF, Zeng GQ, Yi LZ, Liu JP, Wan XX, Qu JQ, Li JH, Li C, Tang CE, Hu R, Ye X, Chen Y, Chen ZC, Xiao ZQ: Identification of integrin β1 as a prognostic biomarker for human lung adenocarcinoma using 2D-LC-MS/MS combined with iTRAQ technology. Oncol Rep 2013, 30(1):341-349.
  • [30]Yu Y, Pan X, Ding Y, Liu X, Tang H, Shen C, Shen H, Yang P: An iTRAQ based quantitative proteomic strategy to explore novel secreted proteins in metastatic hepatocellular carcinoma cell lines. Analyst 2013, 138(16):4505-4511.
  • [31]Su L, Cao L, Zhou R, Jiang Z, Xiao K, Kong W, Wang H, Deng J, Wen B, Tan F, Zhang Y, Xie L: Identification of novel biomarkers for sepsis prognosis via urinary proteomic analysis using iTRAQ labeling and 2D-LC-MS/MS. PLoS One 2013, 8(1):e54237.
  • [32]Ghosh D, Li Z, Tan XF, Lim TK, Mao Y, Lin Q: iTRAQ based quantitative proteomics approach validated the role of calcyclin binding protein (CacyBP) in promoting colorectal cancer metastasis. Mol Cell Proteomics 2013, 12(7):1865-1880.
  • [33]Treumann A, Thiede B: Isobaric protein and peptide quantification: perspectives and issues. Expert Rev Proteomics 2010, 7(5):647-653.
  • [34]Pierce A, Unwin RD, Evans CA, Griffiths S, Carney L, Zhang L, Jaworska E, Lee CF, Blinco D, Okoniewski MJ, Miller CJ, Bitton DA, Spooncer E, Whetton AD: Eight-channel iTRAQ enables comparison of the activity of six leukemogenic tyrosine kinases. Mol Cell Proteomics 2008, 7(5):853-863.
  • [35]Wang W, Liu L, Zheng W, Liu X, Yang P, Lou W, Jin DY, Wang X: iTRAQ-based quantitative proteomics reveals myoferlin as a novel prognostic predictor in pancreatic adenocarcinoma. J Proteome 2013, 8(91):453-465.
  • [36]Ralhan R, Desouza LV, Matta A, Chandra Tripathi S, Ghanny S, Datta Gupta S, Bahadur S, Siu KW: Discovery and verification of head-and-neck cancer biomarkers by differential protein expression analysis using iTRAQ labeling, multidimensional liquid chromatography, and tandem mass spectrometry. Mol Cell Proteomics 2008, 7(6):1162-1173.
  • [37]Tarpy D, Nielsen R, Nielsen DI: A scientific note on the revised estimates of effective paternity frequency in Apis. Insect Soc 2004, 51(2):203-204.
  • [38]Laidlaw H, Page RE: Polyandry in honey bees (Apis mellifera L.): sperm utilization and intracolony genetic relationships. Genetics 1984, 108(4):985-997.
  • [39]Cobey S: Comparison studies of instrumentally inseminated and naturally mated honey bee queens and factors affecting their performance. Apidologie 2007, 38:390-410.
  • [40]Elias JE, Gygi SP: Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 2007, 4(3):207-214.
  • [41]Liu Z, Ji T, Yin L, Shen J, Shen F, Chen G: Transcriptome sequencing analysis reveals the regulation of the hypopharyngeal glands in the honey bee, Apis mellifera carnica Pollmann. PLoS One 2013, 8(12):e81001.
  • [42]Yang X, Cox-Foster DL: Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proc Natl Acad Sci U S A 2005, 102(21):7470-7475.
  • [43]Liu X, Zhang Y, Yan X, Han R: Prevention of Chinese sacbrood virus infection in Apis cerana using RNA interference. Curr Microbiol 2010, 61(5):422-428.
  • [44]Sun J, Mu H, Zhang H, Chandramouli KH, Qian PY, Wong CK, Qiu JW: Understanding the regulation of estivation in a freshwater snail through iTRAQ-based comparative proteomics. J Proteome Res 2013, 12(11):5271-5280.
  • [45]Fleige S, Pfaffl MW: RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 2006, 27(2–3):126-139.
  • [46]Oyama M, Kozuka-Hata H, Tasaki S, Semba K, Hattori S, Sugano S, Inoue J, Yamamoto T: Temporal perturbation of tyrosine phosphoproteome dynamics reveals the system-wide regulatory networks. Mol Cell Proteomics 2009, 8(2):226-231.
  • [47]Evans C, Noirel J, Ow SY, Salim M, Pereira-Medrano AG, Couto N, Pandhal J, Smith D, Pham TK, Karunakaran E, Zou X, Biggs CA, Wright PC: An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 2012, 404(4):1011-1027.
  • [48]Chen X, Hu Y, Zheng H, Cao L, Niu D, Yu D, Sun Y, Hu S, Hu F: Transcriptome comparison between honey bee queen- and worker-destined larvae. Insect Biochem Mol Biol 2012, 42(9):665-673.
  • [49]Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA: The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003, 4:41.
  • [50]Nardini M, Gnesutta N, Donati G, Gatta R, Forni C, Fossati A, Vonrhein C, Moras D, Romier C, Bolognesi M, Mantovani R: Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination. Cell 2013, 152(1–2):132-143.
  • [51]Schild-Poulter C, Shih A, Yarymowich NC, Hache RJ: Down-regulation of histone H2B by DNA-dependent protein kinase in response to DNA damage through modulation of octamer transcription factor 1. Cancer Res 2003, 63(21):7197-7205.
  • [52]Kadowaki T: Milestone toward understanding the genetic bases of social behavior and cognition: completion of honey bee genome project. Tanpakushitsu Kakusan Koso 2006, 51(15):2360-2365.
  • [53]Zheng H, Hu F: Honeybee: a newly emerged model organism (in chinese). Acta Entomol Sin 2009, 52(2):210-215.
  • [54]Kind T, Fiehn O: Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 2006, 7:234.
  • [55]Simuth J, Bilikova K: Potential contribution of royal jelly proteins for health. Honeybee Science 2004, 25(2):53-62.
  • [56]Drapeau MD, Albert S, Kucharski R, Prusko C, Maleszka R: Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees. Genome Res 2006, 16(11):1385-1394.
  • [57]Albertova V, Su S, Brockmann A, Gadau J, Albert S: Organization and potential function of the mrjp3 locus in four honeybee species. J Agric Food Chem 2005, 53(20):8075-8081.
  • [58]Imjongjirak C, Klinbunga S, Sittipraneed S: Cloning, expression and genomic organization of genes encoding major royal jelly protein 1 and 2 of the honey bee (Apis cerana). J Biochem Mol Biol 2005, 38(1):49-57.
  • [59]Kamakura M: Royalactin induces queen differentiation in honeybees. Nature 2011, 473(7348):478-483.
  • [60]Crailsheim K: The flow of jelly within a honeybee colony. J Comp Physiol B 1992, 162:681-689.
  • [61]Crailsheim K: Trophallactic interactions in the adult honeybee (Apis mellifera L.). Apidologie 1998, 29:97-112.
  • [62]Camazine S, Crailsheim K, Hrassnigg N, Robinson GE, Leonhard B, Kropiunigg H: Protein trophallaxis and the regulation of pollen foraging by honey bees (Apis mellifera L.). Apidologie 1998, 29:113-126.
  • [63]Thompson G, Kucharski R, Maleszka R, Oldroyd BP: Towards a molecular definition of worker sterility: differential gene expression and reproductive plasticity in honey bees. Insect Mol Biol 2006, 5:637-644.
  • [64]Kolker E, Makarova KS, Shabalina S, Picone AF, Purvine S, Holzman T, Cherny T, Armbruster D, Munson RS Jr, Kolesov G, Frishman D, Galperin MY: Identification and functional analysis of 'hypothetical' genes expressed in Haemophilus influenzae. Nucleic Acids Res 2004, 32(8):2353-2361.
  • [65]Kielty CM, Baldock C, Lee D, Rock MJ, Ashworth JL, Shuttleworth CA: Fibrillin: from microfibril assembly to biomechanical function. Philos Trans R Soc Lond A 2002, 357(1418):207-217.
  • [66]Kavanagh KL, Jornvall H, Persson B, Oppermann U: Medium- and short-chain dehydrogenase/reductase gene and protein families : the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 2008, 65(24):3895-3906.
  • [67]Neckers L, Ivy SP: Heat shock protein 90. Curr Opin Oncol 2003, 15(6):419-424.
  • [68]Severson DW, Erickson EH Jr, Williamson JL, Aiken JM: Heat stress induced enhancement of heat shock protein gene activity in the honey bee (Apis mellifera). Experientia 1990, 46(7):737-739.
  • [69]Scharlaken B, De Graaf DC, Memmi S, Devreese B, Van Beeumen J, Jacobs FJ: Differential protein expression in the honey bee head after a bacterial challenge. Arch Insect Biochem Physiol 2007, 65(4):223-237.
  • [70]Dunkov B, Georgieva T: Insect iron binding proteins: insights from the genomes. Insect Biochem Mol Biol 2006, 36(4):300-309.
  • [71]Pham D, Winzerling JJ: Insect ferritins: typical or atypical? Biochim Biophys Acta 2010, 1800(8):824-833.
  • [72]Keim CN, Cruz-Landim C, Carneiro FG, Farina M: Ferritin in iron containing granules from the fat body of the honeybees Apis mellifera and Scaptotrigona postica. Micron 2002, 33(1):53-59.
  • [73]Chan QW, Foster LJ: Changes in protein expression during honey bee larval development. Genome Biol 2008, 9(10):R156.
  • [74]Dani FR, Iovinella I, Felicioli A, Niccolini A, Calvello MA, Carucci MG, Qiao H, Pieraccini G, Turillazzi S, Moneti G, Pelosi P: Mapping the expression of soluble olfactory proteins in the honeybee. J Proteome Res 2010, 9(4):1822-1833.
  • [75]Huang ZY, Otis GW, Teal PEA: Nature of brood signal activating the protein synthesis of hypopharyngeal gland in honey bees, Apis mellifera (Apidae:Hymenoptera). Apidologie 1989, 20:455-464.
  • [76]Huang ZY: A simple in vivo estimation of hypopharyngeal gland activity in honeybees (Apis mellifera L., Apidae, Hymenoptera). J Apic Res 1990, 29(2):75-81.
  • [77]Santos KS, Santos LD, Mendes MA, Souza BM, Malaspina O, Palma MS: Profiling the proteome complement of the secretion from hypopharyngeal gland of Africanized nurse-honeybees (Apis mellifera L.). Insect Biochem Mol Biol 2005, 35:85-91.
  • [78]Cao ZZ, Han ZX, Shao YH, Liu XL, Sun JF, Yu DM, Kong XG, Liu SW: Proteomics analysis of differentially expressed proteins in chicken trachea and kidney after infection with the highly virulent and attenuated coronavirus infectious bronchitis virus in vivo. Proteome Sci 2012, 10(24):1-19.
  文献评价指标  
  下载次数:0次 浏览次数:4次