期刊论文详细信息
BMC Neuroscience
Re-engineering a neuroprotective, clinical drug as a procognitive agent with high in vivo potency and with GABA A potentiating activity for use in dementia
Gregory R. J. Thatcher4  David R. Pepperberg1  Lan Yue2  Ottavio Arancio3  Mauro Fà3  Manel Ben Aissa4  Rezene T. Asghodom4  Ehsan Tavassoli4  Sujeewa Piyankarage4  Zhihui Qin4  Lawren VandeVrede4  Sue H. Lee4  Jia Luo4 
[1] Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago 60607, IL, USA;Department of Ophthalmology, University of Southern California, 1441 Eastlake Ave., Los Angeles 90033, CA, USA;Department of Pathology and The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, 630 W 168th St., New York 10032, NY, USA;Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, UIC, 833 S. Wood St., Chicago 60612-7231, IL, USA
关键词: Cognitive deficits;    LTP;    pCREB;    sGC/NO/cGMP;    NMZ;    Chlormethiazole;    CMZ;    Alzheimer’s disease;   
Others  :  1230630
DOI  :  10.1186/s12868-015-0208-9
 received in 2015-06-25, accepted in 2015-10-07,  发布年份 2015
PDF
【 摘 要 】

Background

Synaptic dysfunction is a key event in pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD) where synapse loss pathologically correlates with cognitive decline and dementia. Although evidence suggests that aberrant protein production and aggregation are the causative factors in familial subsets of such diseases, drugs singularly targeting these hallmark proteins, such as amyloid-β, have failed in late stage clinical trials. Therefore, to provide a successful disease-modifying compound and address synaptic dysfunction and memory loss in AD and mixed pathology dementia, we repurposed a clinically proven drug, CMZ, with neuroprotective and anti-inflammatory properties via addition of nitric oxide (NO) and cGMP signaling property.

Results

The novel compound, NMZ, was shown to retain the GABA Apotentiating actions of CMZ in vitro and sedative activity in vivo. Importantly, NMZ restored LTP in hippocampal slices from AD transgenic mice, whereas CMZ was without effect. NMZ reversed amnestic blockade of acetylcholine receptors by scopolamine as well as NMDA receptor blockade by a benzodiazepine and a NO synthase inhibitor in the step-through passive avoidance (STPA) test of learning and working memory. A PK/PD relationship was developed based on STPA analysis coupled with pharmacokinetic measures of drug levels in the brain: at 1 nM concentration in brain and plasma, NMZ was able to restore memory consolidation in mice.

Conclusion

Our findings show that NMZ embodies a promising pharmacological approach targeting synaptic dysfunction and opens new avenues for neuroprotective intervention strategies in mixed pathology AD, neurodegeneration, and dementia.

【 授权许可】

   
2015 Luo et al.

【 预 览 】
附件列表
Files Size Format View
20151107022024355.pdf 1276KB PDF download
Fig.4. 48KB Image download
Fig.3. 29KB Image download
Fig.2. 64KB Image download
Fig.1. 35KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

【 参考文献 】
  • [1]Thies W, Bleiler L: 2013 Alzheimer’s disease facts and figures. Alzheimers Dement 2013, 9(2):208-245.
  • [2]Tanzi RE, Kovacs DM, Kim TW, Moir RD, Guenette SY, Wasco W: The gene defects responsible for familial Alzheimer’s disease. Neurobiol Dis 1996, 3(3):159-168.
  • [3]Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J: Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 1999, 155(3):853-862.
  • [4]McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL: Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 1999, 46(6):860-866.
  • [5]Wang J, Dickson DW, Trojanowski JQ, Lee VM: The levels of soluble versus insoluble brain Abeta distinguish Alzheimer’s disease from normal and pathologic aging. Exp Neurol 1999, 158(2):328-337.
  • [6]Hardy J, Allsop D: Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 1991, 12(10):383-388.
  • [7]Imbimbo BP: Why did tarenflurbil fail in Alzheimer’s disease? J Alzheimers Dis 2009, 17(4):757-760.
  • [8]Sabbagh MN: Drug development for Alzheimer’s disease: where are we now and where are we headed? Am J Geriatr Pharmacother 2009, 7(3):167-185.
  • [9]Extance A: Alzheimer’s failure raises questions about disease-modifying strategies. Nat Rev Drug Discov 2010, 9(10):749-751.
  • [10]Karran E, Hardy J: Antiamyloid therapy for Alzheimer’s disease—are we on the right road? N Engl J Med 2014, 370(4):377-378.
  • [11]Mikulca JA, Nguyen V, Gajdosik DA, Teklu SG, Giunta EA, Lessa EA, Tran CH, Terak EC, Raffa RB: Potential novel targets for Alzheimer pharmacotherapy: II. Update on secretase inhibitors and related approaches. J Clin Pharm Ther 2014, 39(1):25-37.
  • [12]Schneider JA, Arvanitakis Z, Yu L, Boyle PA, Leurgans SE, Bennett DA: Cognitive impairment, decline and fluctuations in older community-dwelling subjects with Lewy bodies. Brain 2012, 135(Pt 10):3005-3014.
  • [13]Negash S, Wilson RS, Leurgans SE, Wolk DA, Schneider JA, Buchman AS, Bennett DA, Arnold SE: Resilient brain aging: characterization of discordance between Alzheimer’s disease pathology and cognition. Curr Alzheimer Res 2013, 10(8):844-851.
  • [14]Selkoe DJ: Alzheimer’s disease is a synaptic failure. Science 2002, 298(5594):789-791.
  • [15]Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, et al.: Inflammation and Alzheimer’s disease. Neurobiol Aging 2000, 21(3):383-421.
  • [16]Gella A, Durany N: Oxidative stress in Alzheimer disease. Cell Adhes Migr 2009, 3(1):88-93.
  • [17]Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, et al.: Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 2001, 21(9):3017-3023.
  • [18]Stellos K, Katsiki N, Tatsidou P, Bigalke B, Laske C: Association of platelet activation with vascular cognitive impairment: implications in dementia development? Curr Vasc Pharmacol 2014, 12(1):152-154.
  • [19]Bangen KJ, Nation DA, Delano-Wood L, Weissberger GH, Hansen LA, Galasko DR, Salmon DP, Bondi MW: Aggregate effects of vascular risk factors on cerebrovascular changes in autopsy-confirmed Alzheimer’s disease. Alzheimers Dement. 2014, 11(14):394-403.
  • [20]Connor B, Young D, Yan Q, Faull RL, Synek B, Dragunow M: Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Brain Res Mol Brain Res 1997, 49(1–2):71-81.
  • [21]Fahnestock M, Garzon D, Holsinger RM, Michalski B: Neurotrophic factors and Alzheimer’s disease: are we focusing on the wrong molecule? J Neural Transm Suppl 2002, 62:241-252.
  • [22]Demuro A, Parker I, Stutzmann GE: Calcium signaling and amyloid toxicity in Alzheimer disease. J Biol Chem 2010, 285(17):12463-12468.
  • [23]Herrup K, Carrillo MC, Schenk D, Cacace A, Desanti S, Fremeau R, Bhat R, Glicksman M, May P, Swerdlow R, et al.: Beyond amyloid: getting real about nonamyloid targets in Alzheimer’s disease. Alzheimers Dement 2013, 9(4):452-458.e451.
  • [24]Corbett A, Pickett J, Burns A, Corcoran J, Dunnett SB, Edison P, Hagan JJ, Holmes C, Jones E, Katona C, et al.: Drug repositioning for Alzheimer’s disease. Nat Rev Drug Discov 2012, 11(11):833-846.
  • [25]Marshall JW, Cross AJ, Jackson DM, Green AR, Baker HF, Ridley RM: Clomethiazole protects against hemineglect in a primate model of stroke. Brain Res Bull 2000, 52(1):21-29.
  • [26]Harmon D, Coleman E, Marshall C, Lan W, Shorten G: The effect of clomethiazole on plasma concentrations of interleukin-6, -8, -1beta, tumor necrosis factor-alpha, and neutrophil adhesion molecule expression during experimental extracorporeal circulation. Anesth Analg 2003, 97(1):13-18.
  • [27]Clarkson AN, Liu H, Rahman R, Jackson DM, Appleton I, Kerr DS: Clomethiazole: mechanisms underlying lasting neuroprotection following hypoxia-ischemia. Faseb J 2005, 19(8):1036-1038.
  • [28]Clarkson AN, Clarkson J, Jackson DM, Sammut IA: Mitochondrial involvement in transhemispheric diaschisis following hypoxia-ischemia: Clomethiazole-mediated amelioration. Neuroscience 2007, 144(2):547-561.
  • [29]Wilby MJ, Hutchinson PJ: The pharmacology of chlormethiazole: a potential neuroprotective agent? CNS Drug Rev 2004, 10(4):281-294.
  • [30]Hankey GJ: Clomethiazole: an unsuccessful bachelor, but perhaps a prosperous married man? Stroke 2002, 33(1):128-129.
  • [31]Vandevrede L, Tavassoli E, Luo J, Qin Z, Yue L, Pepperberg DR, Thatcher GR: Novel analogues of chlormethiazole are neuroprotective in four cellular models of neurodegeneration by a mechanism with variable dependence on GABAA receptor potentiation. Br J Pharmacol 2014, 171(2):389-402.
  • [32]Teich AF, Arancio O: Is the amyloid hypothesis of Alzheimer’s disease therapeutically relevant? Biochem J 2012, 446(2):165-177.
  • [33]Silva AJ, Kogan JH, Frankland PW, Kida S: CREB and memory. Annu Rev Neurosci 1998, 21:127-148.
  • [34]Lu YF, Kandel ER, Hawkins RD: Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J Neurosci 1999, 19(23):10250-10261.
  • [35]Wang HG, Lu FM, Jin I, Udo H, Kandel ER, de Vente J, Walter U, Lohmann SM, Hawkins RD, Antonova I: Presynaptic and postsynaptic roles of NO, cGK, and RhoA in long-lasting potentiation and aggregation of synaptic proteins. Neuron 2005, 45(3):389-403.
  • [36]Pugazhenthi S, Wang M, Pham S, Sze CI, Eckman CB: Downregulation of CREB expression in Alzheimer’s brain and in Abeta-treated rat hippocampal neurons. Mol Neurodegener 2011, 6:60. BioMed Central Full Text
  • [37]Satoh J, Tabunoki H, Arima K: Molecular network analysis suggests aberrant CREB-mediated gene regulation in the Alzheimer disease hippocampus. Dis Markers 2009, 27(5):239-252.
  • [38]Ogren SO: Chlormethiazole–mode of action. Acta Psychiatr Scand Suppl 1986, 329:13-27.
  • [39]Nelson RM, Green AR, Hainsworth AH: Electrophysiological actions of g-aminobutyric acid and clomethiazole on recombinant GABAA receptors. Eur J Pharmacol 2002, 452(3):255-262.
  • [40]Neitz A, Mergia E, Imbrosci B, Petrasch-Parwez E, Eysel UT, Koesling D, Mittmann T: Postsynaptic NO/cGMP increases NMDA receptor currents via hyperpolarization-activated cyclic nucleotide-gated channels in the hippocampus. Cereb Cortex 2014, 24(7):1923-1936.
  • [41]Buccafusco J: The Revival of scopolamine reversal for the assessment of cognition-enhancing drugs. In Methods of behavior analysis in neuroscience. 2nd edition. Edited by Buccafusco J. CRC Press, Boca Raton; 2009.
  • [42]Tomaz C, Dickinson-Anson H, McGaugh JL: Amygdala lesions block the amnestic effects of diazepam. Brain Res 1991, 568(1–2):85-91.
  • [43]Charonnat R, Lechat P, Chareton J: From a convulsive to an anticonvulsive product in the thiamine series. Therapie 1956, 11:261-264.
  • [44]Tai LM, Koster KP, Luo J, Lee SH, Wang YT, Collins NC, Ben Aissa M, Thatcher GR, LaDu MJ: Amyloid-beta Pathology and APOE Genotype Modulate Retinoid X Receptor Agonist Activity in vivo. J Biol Chem. 2014, 289(44):30538-30555.
  • [45]Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002, 297(5580):353-356.
  • [46]Selkoe DJ: The molecular pathology of Alzheimer’s disease. Neuron 1991, 6(4):487-498.
  • [47]Giannakopoulos P, Herrmann FR, Bussiere T, Bouras C, Kovari E, Perl DP, Morrison JH, Gold G, Hof PR: Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 2003, 60(9):1495-1500.
  • [48]Karran E, Hardy J: A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease. Ann Neurol 2014, 76(2):185-205.
  • [49]Toyn JH, Ahlijanian MK: Interpreting Alzheimer’s disease clinical trials in light of the effects on amyloid-beta. Alzheimers Res Ther 2014, 6(2):14. BioMed Central Full Text
  • [50]Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB: Diabetes mellitus and Alzheimer’s disease: shared pathology and treatment? Br J Clin Pharmacol 2011, 71(3):365-376.
  • [51]Li J, Wang YJ, Zhang M, Xu ZQ, Gao CY, Fang CQ, Yan JC, Zhou HD: Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology 2011, 76(17):1485-1491.
  • [52]Roberson ED, Mucke L: 100 years and counting: prospects for defeating Alzheimer’s disease. Science 2006, 314(5800):781-784.
  • [53]Wahlgren NG, Diez-Tejedor E, Teitelbaum J, Arboix A, Leys D, Ashwood T, Grossman E: Results in 95 hemorrhagic stroke patients included in CLASS, a controlled trial of clomethiazole versus placebo in acute stroke patients. Stroke 2000, 31(1):82-85.
  • [54]Lyden P, Shuaib A, Ng K, Levin K, Atkinson RP, Rajput A, Wechsler L, Ashwood T, Claesson L, Odergren T, et al.: Clomethiazole Acute Stroke Study in ischemic stroke (CLASS-I): final results. Stroke 2002, 33(1):122-128.
  • [55]Lindberg UH: Hypnotic and anticonvulsant agents related to the thiazole part of thiamine. Acta Pharm Suec 1971, 8(6):647-660.
  • [56]Nelson RM, Hainsworth AH, Lambert DG, Jones JA, Murray TK, Richards DA, Gabrielsson J, Cross AJ, Green AR: Neuroprotective efficacy of AR-A008055, a clomethiazole analogue, in a global model of acute ischaemic stroke and its effect on ischaemia-induced glutamate and GABA efflux in vitro. Neuropharmacology 2001, 41(2):159-166.
  • [57]Colado MI, O’Shea E, Esteban B, Green AR: Studies on the neuroprotective effect of the enantiomers of AR-A008055, a compound structurally related to clomethiazole, on MDMA (“ecstasy”)-induced neurodegeneration in rat brain. Psychopharmacology 2001, 157(1):82-88.
  • [58]Louzada PR, Paula Lima AC, Mendonca-Silva DL, Noel F, De Mello FG, Ferreira ST: Taurine prevents the neurotoxicity of beta-amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer’s disease and other neurological disorders. FASEB J 2004, 18(3):511-518.
  • [59]Lee BY, Ban JY, Seong YH: Chronic stimulation of GABAA receptor with muscimol reduces amyloid beta protein (25–35)-induced neurotoxicity in cultured rat cortical cells. Neurosci Res 2005, 52(4):347-356.
  • [60]Marcade M, Bourdin J, Loiseau N, Peillon H, Rayer A, Drouin D, Schweighoffer F, Desire L: Etazolate, a neuroprotective drug linking GABA(A) receptor pharmacology to amyloid precursor protein processing. J Neurochem 2008, 106(1):392-404.
  • [61]Rissman RA, Mobley WC: Implications for treatment: GABAA receptors in aging, Down syndrome and Alzheimer’s disease. J Neurochem 2011, 117(4):613-622.
  • [62]Tweedie D, Sambamurti K, Greig NH: TNF-alpha inhibition as a treatment strategy for neurodegenerative disorders: new drug candidates and targets. Curr Alzheimer Res 2007, 4(4):378-385.
  • [63]McAlpine FE, Lee JK, Harms AS, Ruhn KA, Blurton-Jones M, Hong J, Das P, Golde TE, LaFerla FM, Oddo S, et al.: Inhibition of soluble TNF signaling in a mouse model of Alzheimer’s disease prevents pre-plaque amyloid-associated neuropathology. Neurobiol Dis 2009, 34(1):163-177.
  • [64]Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW Jr, Morris JC: Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 2001, 56(1):127-129.
  • [65]Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R: Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991, 30(4):572-580.
  • [66]Gong B, Vitolo OV, Trinchese F, Liu S, Shelanski M, Arancio O: Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest 2004, 114(11):1624-1634.
  • [67]Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW: BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron 1991, 7(5):695-702.
  • [68]Lu YF, Hawkins RD: Ryanodine receptors contribute to cGMP-induced late-phase LTP and CREB phosphorylation in the hippocampus. J Neurophysiol 2002, 88(3):1270-1278.
  • [69]Arancio O, Kandel ER, Hawkins RD: Activity-dependent long-term enhancement of transmitter release by presynaptic 3′,5′-cyclic GMP in cultured hippocampal neurons. Nature 1995, 376(6535):74-80.
  • [70]Kim J, Kwon JT, Kim HS, Josselyn SA, Han JH: Memory recall and modifications by activating neurons with elevated CREB. Nat Neurosci 2014, 17(1):65-72.
  • [71]Barco A, Alarcon JM, Kandel ER: Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 2002, 108(5):689-703.
  • [72]Bennett BM, Reynolds JN, Prusky GT, Douglas RM, Sutherland RJ, Thatcher GRJ: Cognitive deficits in rats after forebrain cholinergic depletion are reversed by a novel NO mimetic nitrate ester. Neuropsychopharmacology 2007, 32(3):505-513.
  • [73]Puzzo D, Palmeri A, Arancio O: Involvement of the nitric oxide pathway in synaptic dysfunction following amyloid elevation in Alzheimer’s disease. Rev Neurosci 2006, 17(5):497-523.
  • [74]Javadi-Paydar M, Rayatnia F, Fakhraei N, Zakeri M, Mirazi N, Norouzi A, Dehpour AR: Atorvastatin improved scopolamine-induced impairment in memory acquisition in mice: involvement of nitric oxide. Brain Res 2011, 1386:89-99.
  • [75]Chien WL, Liang KC, Teng CM, Kuo SC, Lee FY, Fu WM: Enhancement of learning behaviour by a potent nitric oxide-guanylate cyclase activator YC-1. Eur J Neurosci 2005, 21(6):1679-1688.
  • [76]Terry AV Jr, Buccafusco JJ: The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 2003, 306(3):821-827.
  • [77]Bartus RT, Dean RL 3rd, Beer B, Lippa AS: The cholinergic hypothesis of geriatric memory dysfunction. Science 1982, 217(4558):408-414.
  • [78]Trinchese F, Liu S, Battaglia F, Walter S, Mathews PM, Arancio O: Progressive age-related development of Alzheimer-like pathology in APP/PS1 mice. Ann Neurol 2004, 55(6):801-814.
  • [79]Vitolo OV, Sant’Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M: Amyloid beta -peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci USA 2002, 99(20):13217-13221.
  • [80]Cha YM, Li Q, Wilson WA, Swartzwelder HS: Sedative and GABAergic effects of ethanol on male and female rats. Alcohol Clin Exp Res 2006, 30(1):113-118.
  • [81]Kawas CH, Corrada MM: Alzheimer’s and dementia in the oldest-old: a century of challenges. Curr Alzheimer Res 2006, 3(5):411-419.
  • [82]VandeVrede L, Abdelhamid R, Qin Z, Choi J, Piyankarage S, Luo J, Larson J, Bennett BM, Thatcher GR: An NO donor approach to neuroprotective and procognitive estrogen therapy overcomes loss of NO synthase function and potentially thrombotic risk. PLoS One 2013, 8(8):e70740.
  • [83]Schiefer IT, Vandevrede L, Fa M, Arancio O, Thatcher GR: Furoxans (1,2,5-Oxadiazole-N-Oxides) as novel NO mimetic neuroprotective and procognitive agents. J Med Chem 2012, 55(7):3076-3087.
  • [84]Qin Z, Luo J, VandeVrede L, Tavassoli E, Fa M, Teich AF, Arancio O, Thatcher GR: Design and synthesis of neuroprotective methylthiazoles and modification as NO-chimeras for neurodegenerative therapy. J Med Chem 2012, 55(15):6784-6801.
  • [85]Abdul-Hay S, Schiefer IT, Chandrasena RE, Li M, Abdelhamid R, Wang YT, Tavassoli E, Michalsen B, Asghodom RT, Luo J, et al.: NO-SSRIs: nitric oxide chimera drugs incorporating a selective serotonin reuptake inhibitor. ACS Med Chem Lett 2011, 2(9):656-661.
  文献评价指标  
  下载次数:34次 浏览次数:15次