期刊论文详细信息
BMC Structural Biology
Structural and biochemical characterization of the essential DsbA-like disulfide bond forming protein from Mycobacterium tuberculosis
Celia W Goulding2  David J Guzman2  Christine A Harmston1  Nicholas Chim1 
[1] Departments of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA;Pharmaceutical Sciences, UCI, Irvine, CA 92697, USA
关键词: Oxidoreductase;    Vitamin K epoxide reductase;    DsbA;    X-ray crystallography;    Disulfide bond;    Mycobacterium tuberculosis;   
Others  :  793773
DOI  :  10.1186/1472-6807-13-23
 received in 2013-07-09, accepted in 2013-10-11,  发布年份 2013
PDF
【 摘 要 】

Background

Bacterial Disulfide bond forming (Dsb) proteins facilitate proper folding and disulfide bond formation of periplasmic and secreted proteins. Previously, we have shown that Mycobacterium tuberculosis Mt-DsbE and Mt-DsbF aid in vitro oxidative folding of proteins. The M. tuberculosis proteome contains another predicted membrane-tethered Dsb protein, Mt-DsbA, which is encoded by an essential gene.

Results

Herein, we present structural and biochemical analyses of Mt-DsbA. The X-ray crystal structure of Mt-DsbA reveals a two-domain structure, comprising a canonical thioredoxin domain with the conserved CXXC active site cysteines in their reduced form, and an inserted α-helical domain containing a structural disulfide bond. The overall fold of Mt-DsbA resembles that of other DsbA-like proteins and not Mt-DsbE or Mt-DsbF. Biochemical characterization demonstrates that, unlike Mt-DsbE and Mt-DsbF, Mt-DsbA is unable to oxidatively fold reduced, denatured hirudin. Moreover, on the substrates tested in this study, Mt-DsbA has disulfide bond isomerase activity contrary to Mt-DsbE and Mt-DsbF.

Conclusion

These results suggest that Mt-DsbA acts upon a distinct subset of substrates as compared to Mt-DsbE and Mt-DsbF. One could speculate that Mt-DsbE and Mt-DsbF are functionally redundant whereas Mt-DsbA is not, offering an explanation for the essentiality of Mt-DsbA in M. tuberculosis.

【 授权许可】

   
2013 Chim et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705055121460.pdf 2536KB PDF download
Figure 8. 90KB Image download
Figure 7. 142KB Image download
Figure 6. 174KB Image download
Figure 5. 71KB Image download
Figure 4. 105KB Image download
Figure 3. 200KB Image download
Figure 2. 122KB Image download
Figure 1. 71KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Pedone E, Limauro D, D'Ambrosio K, De Simone G, Bartolucci S: Multiple catalytically active thioredoxin folds: a winning strategy for many functions. Cell Mol Life Sci 2010, 67:3797-3814.
  • [2]Gleiter S, Bardwell JC: Disulfide bond isomerization in prokaryotes. Biochim Biophys Acta 2008, 1783:530-534.
  • [3]Gruber CW, Cemazar M, Heras B, Martin JL, Craik DJ: Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci 2006, 31:455-464.
  • [4]Missiakas D, Raina S: Protein folding in the bacterial periplasm. J Bacteriol 1997, 179:2465-2471.
  • [5]Bardwell JC, McGovern K, Beckwith J: Identification of a protein required for disulfide bond formation in vivo. Cell 1991, 67:581-589.
  • [6]Joly JC, Swartz JR: In vitro and in vivo redox states of the Escherichia coli periplasmic oxidoreductases DsbA and DsbC. Biochemistry 1997, 36:10067-10072.
  • [7]Bader M, Muse W, Ballou DP, Gassner C, Bardwell JC: Oxidative protein folding is driven by the electron transport system. Cell 1999, 98:217-227.
  • [8]Missiakas D, Georgopoulos C, Raina S: Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo. Proc Natl Acad Sci USA 1993, 90:7084-7088.
  • [9]Bessette PH, Cotto JJ, Gilbert HF, Georgiou G: In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG. J Biol Chem 1999, 274:7784-7792.
  • [10]Rietsch A, Bessette P, Georgiou G, Beckwith J: Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J Bacteriol 1997, 179:6602-6608.
  • [11]Stewart EJ, Katzen F, Beckwith J: Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. EMBO J 1999, 18:5963-5971.
  • [12]Grovc J, Busby S, Cole J: The role of the genes nrf EFG and ccmFH in cytochrome c biosynthesis in Escherichia coli. Mol Gen Genet 1996, 252:332-341.
  • [13]Bessette PH, Aslund F, Beckwith J, Georgiou G: Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci USA 1999, 96:13703-13708.
  • [14]Kouwen TR, van der Goot A, Dorenbos R, Winter T, Antelmann H, Plaisier MC, Quax WJ, van Dijl JM, Dubois JY: Thiol-disulphide oxidoreductase modules in the low-GC Gram-positive bacteria. Mol Microbiol 2007, 64:984-999.
  • [15]Zav'yalov VP, Chernovskaya TV, Chapman DA, Karlyshev AV, MacIntyre S, Zavialov AV, Vasiliev AM, Denesyuk AI, Zav'yalova GA, Dudich IV, et al.: Influence of the conserved disulphide bond, exposed to the putative binding pocket, on the structure and function of the immunoglobulin-like molecular chaperone Caf1M of Yersinia pestis. Biochem J 1997, 324(Pt 2):571-578.
  • [16]Yu J, Kroll JS: DsbA: a protein-folding catalyst contributing to bacterial virulence. Microbes Infect 1999, 1:1221-1228.
  • [17]Hu SH, Peek JA, Rattigan E, Taylor RK, Martin JL: Structure of TcpG, the DsbA protein folding catalyst from Vibrio cholerae. J Mol Biol 1997, 268:137-146.
  • [18]Manning PA: The tcp gene cluster of Vibrio cholerae. Gene 1997, 192:63-70.
  • [19]Zhang HZ, Donnenberg MS: DsbA is required for stability of the type IV pilin of enteropathogenic Escherichia coli. Mol Microbiol 1996, 21:787-797.
  • [20]The World Health Organization: Tuberculosis Global Control Facts. http://www.who.int/tb/publications/global_report/2011/gtbr11_full.pdf webcite
  • [21]Goulding CW, Apostol MI, Gleiter S, Parseghian A, Bardwell J, Gennaro M, Eisenberg D: Gram-positive DsbE proteins function differently from Gram-negative DsbE homologs. A structure to function analysis of DsbE from Mycobacterium tuberculosis. J Biol Chem 2004, 279:3516-3524.
  • [22]Garces A, Atmakuri K, Chase MR, Woodworth JS, Krastins B, Rothchild AC, Ramsdell TL, Lopez MF, Behar SM, Sarracino DA, Fortune SM: EspA acts as a critical mediator of ESX1-dependent virulence in Mycobacterium tuberculosis by affecting bacterial cell wall integrity. PLoS Pathog 2010, 6:e1000957.
  • [23]Hahn MY, Raman S, Anaya M, Husson RN: The Mycobacterium tuberculosis extracytoplasmic-function sigma factor SigL regulates polyketide synthases and secreted or membrane proteins and is required for virulence. J Bacteriol 2005, 187:7062-7071.
  • [24]Li Q, Hu H, Xu G: Biochemical characterization of the thioredoxin domain of Escherichia coli DsbE protein reveals a weak reductant. Biochem Biophys Res Commun 2001, 283:849-853.
  • [25]Chim N, Riley R, The J, Im S, Segelke B, Lekin T, Yu M, Hung LW, Terwilliger T, Whitelegge JP, Goulding CW: An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis. J Mol Biol 2010, 396:1211-1226.
  • [26]Dutton RJ, Boyd D, Berkmen M, Beckwith J: Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc Natl Acad Sci USA 2008, 105:11933-11938.
  • [27]Dutton RJ, Wayman A, Wei JR, Rubin EJ, Beckwith J, Boyd D: Inhibition of bacterial disulfide bond formation by the anticoagulant warfarin. Proc Natl Acad Sci USA 2010, 107:297-301.
  • [28]Wang X, Dutton RJ, Beckwith J, Boyd D: Membrane topology and mutational analysis of Mycobacterium tuberculosis VKOR, a protein involved in disulfide bond formation and a homologue of human vitamin K epoxide reductase. Antioxid Redox Signal 2011, 14:1413-1420.
  • [29]Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, et al.: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998, 393:537-544.
  • [30]Crow A, Lewin A, Hecht O, Carlsson Moller M, Moore GR, Hederstedt L, Le Brun NE: Crystal structure and biophysical properties of Bacillus subtilis BdbD. An oxidizing thiol:disulfide oxidoreductase containing a novel metal site. J Biol Chem 2009, 284:23719-23733.
  • [31]Heras B, Kurz M, Jarrott R, Shouldice SR, Frei P, Robin G, Cemazar M, Thony-Meyer L, Glockshuber R, Martin JL: Staphylococcus aureus DsbA does not have a destabilizing disulfide. A new paradigm for bacterial oxidative folding. J Biol Chem 2008, 283:4261-4271.
  • [32]Patarroyo MA, Plaza DF, Ocampo M, Curtidor H, Forero M, Rodriguez LE, Patarroyo ME: Functional characterization of Mycobacterium tuberculosis Rv2969c membrane protein. Biochem Biophys Res Commun 2008, 372:935-940.
  • [33]Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D: Detecting protein function and protein-protein interactions from genome sequences. Science 1999, 285:751-753.
  • [34]Sassetti CM, Boyd DH, Rubin EJ: Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 2003, 48:77-84.
  • [35]Wunderlich M, Glockshuber R: Redox properties of protein disulfide isomerase (DsbA) from Escherichia coli. Protein Sci 1993, 2:717-726.
  • [36]Zapun A, Bardwell JC, Creighton TE: The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry 1993, 32:5083-5092.
  • [37]Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: signalP 3.0. J Mol Biol 2004, 340:783-795.
  • [38]Krogh A, Larsson B, von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001, 305:567-580.
  • [39]Heras B, Edeling MA, Schirra HJ, Raina S, Martin JL: Crystal structures of the DsbG disulfide isomerase reveal an unstable disulfide. Proc Natl Acad Sci USA 2004, 101:8876-8881.
  • [40]Guddat LW, Bardwell JC, Martin JL: Crystal structures of reduced and oxidized DsbA: investigation of domain motion and thiolate stabilization. Structure 1998, 6:757-767.
  • [41]Holm L, Kaariainen S, Rosenstrom P, Schenkel A: Searching protein structure databases with DaliLite v.3. Bioinform (Oxford, England) 2008, 24:2780-2781.
  • [42]Kurz M, Iturbe-Ormaetxe I, Jarrott R, Shouldice SR, Wouters MA, Frei P, Glockshuber R, O'Neill SL, Heras B, Martin JL: Structural and functional characterization of the oxidoreductase alpha-DsbA1 from Wolbachia pipientis. Antioxid Redox Signal 2009, 11:1485-1500.
  • [43]Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, et al.: PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 2010, 66:213-221.
  • [44]Inaba K, Murakami S, Suzuki M, Nakagawa A, Yamashita E, Okada K, Ito K: Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Cell 2006, 127:789-801.
  • [45]Van Dorsselaer A, Lepage P, Bitsch F, Whitechurch O, Riehl-Bellon N, Fraisse D, Green B, Roitsch C: Mass spectrometry analyses of recombinant hirudins (7 kDa). Biochemistry 1989, 28:2949-2956.
  • [46]DeLano DL: The PyMOL Molecular Graphics System. 2011. [Version 1.2r3pre, DeLano Scientific, Schrödinger, LLC]
  • [47]Martin JL, Bardwell JC, Kuriyan J: Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature 1993, 365:464-468.
  • [48]Vivian JP, Scoullar J, Robertson AL, Bottomley SP, Horne J, Chin Y, Wielens J, Thompson PE, Velkov T, Piek S, et al.: Structural and biochemical characterization of the oxidoreductase NmDsbA3 from Neisseria meningitidis. J Biol Chem 2008, 283:32452-32461.
  • [49]Li W, Schulman S, Dutton RJ, Boyd D, Beckwith J, Rapoport TA: Structure of a bacterial homologue of vitamin K epoxide reductase. Nature 2010, 463:507-512.
  • [50]Walden PM, Heras B, Chen KE, Halili MA, Rimmer K, Sharma P, Scanlon MJ, Martin JL: The 1.2 A resolution crystal structure of TcpG, the Vibrio cholerae DsbA disulfide-forming protein required for pilus and cholera-toxin production. Acta Crystallogr D Biol Crystallogr 2012, 68:1290-1302.
  • [51]Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006, 22:195-201.
  • [52]Van Duyne GD, Standaert RF, Karplus PA, Schreiber SL, Clardy J: Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J Mol Biol 1993, 229:105-124.
  • [53]Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG: iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr 2011, 67:271-281.
  • [54]Sheldrick GM: A short history of SHELX. Acta Crystallogr A 2008, 64:112-122.
  • [55]McCoy AJ, Grosse-Kunstleve RW, Storoni LC, Read RJ: Likelihood-enhanced fast translation functions. Acta Crystallogr D Biol Crystallogr 2005, 61:458-464.
  • [56]Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Zwart PH, Hung LW, Read RJ, Adams PD: Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr D Biol Crystallogr 2008, 64:61-69.
  • [57]Emsley P, Cowtan K: Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004, 60:2126-2132.
  • [58]Laskowski RA, Moss DS, Thornton JM: Main-chain bond lengths and bond angles in protein structures. J Mol Biol 1993, 231:1049-1067.
  • [59]Colovos C, Yeates TO: Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 1993, 2:1511-1519.
  • [60]Holmgren A: Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem 1979, 254:9627-9632.
  • [61]Hillson DA, Lambert N, Freedman RB: Formation and isomerization of disulfide bonds in proteins: protein disulfide-isomerase. Methods Enzymol 1984, 107:281-294.
  文献评价指标  
  下载次数:63次 浏览次数:17次