期刊论文详细信息
BMC Medical Genomics
Integrated molecular portrait of non-small cell lung cancers
Yudi Pawitan9  Johan Hansson2  Philippe Dessen1,10  Jean-Charles Soria1,10  Pierre Validire7  Fiona Blackhall6  Philippe Girard7  Benjamin Besse1,10  Jacques Cadranel4  Manfred Schmitt8  Alexander Eggermont1,10  Rudolf Napieralski8  Janne Lehtiö5  Fabienne Dufour1,10  Philippe Vielh1,10  Ludovic Lacroix1,10  Joakim Lundeberg1  Johanna Hasmats1  Stefano Calza9  Hugues Ripoche1,10  Guillaume Meurice1,10  Bastien Job1,10  Justine Guegan1,10  Zsofia Balogh1,10  Joost van den Oord3  Cedric Orear1,10  Chen Suo9  Vladimir Lazar1,10 
[1] Royal Institute of Technology, Stockholm, Sweden;Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden;Faculty of Medicine, University of Leuven, Leuven, Belgium;Tenon Hospital, Paris, France;Science of Life Laboratory, Karolinska Institutet, Stockholm, Sweden;Manchester Cancer Research Centre, University of Manchester, Manchester, England;Institut Mutualiste Montsouris, Paris, France;Technical University of Munich, Munich, Germany;Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden;Institut Gustave Roussy, Villejuif, France
关键词: Systems biology;    LCC;    SCC;    AC;    NSCLC;   
Others  :  1091254
DOI  :  10.1186/1755-8794-6-53
 received in 2013-03-20, accepted in 2013-11-08,  发布年份 2013
PDF
【 摘 要 】

Background

Non-small cell lung cancer (NSCLC), a leading cause of cancer deaths, represents a heterogeneous group of neoplasms, mostly comprising squamous cell carcinoma (SCC), adenocarcinoma (AC) and large-cell carcinoma (LCC). The objectives of this study were to utilize integrated genomic data including copy-number alteration, mRNA, microRNA expression and candidate-gene full sequencing data to characterize the molecular distinctions between AC and SCC.

Methods

Comparative genomic hybridization followed by mutational analysis, gene expression and miRNA microarray profiling were performed on 123 paired tumor and non-tumor tissue samples from patients with NSCLC.

Results

At DNA, mRNA and miRNA levels we could identify molecular markers that discriminated significantly between the various histopathological entities of NSCLC. We identified 34 genomic clusters using aCGH data; several genes exhibited a different profile of aberrations between AC and SCC, including PIK3CA, SOX2, THPO, TP63, PDGFB genes. Gene expression profiling analysis identified SPP1, CTHRC1and GREM1 as potential biomarkers for early diagnosis of the cancer, and SPINK1 and BMP7 to distinguish between AC and SCC in small biopsies or in blood samples. Using integrated genomics approach we found in recurrently altered regions a list of three potential driver genes, MRPS22, NDRG1 and RNF7, which were consistently over-expressed in amplified regions, had wide-spread correlation with an average of ~800 genes throughout the genome and highly associated with histological types. Using a network enrichment analysis, the targets of these potential drivers were seen to be involved in DNA replication, cell cycle, mismatch repair, p53 signalling pathway and other lung cancer related signalling pathways, and many immunological pathways. Furthermore, we also identified one potential driver miRNA hsa-miR-944.

Conclusions

Integrated molecular characterization of AC and SCC helped identify clinically relevant markers and potential drivers, which are recurrent and stable changes at DNA level that have functional implications at RNA level and have strong association with histological subtypes.

【 授权许可】

   
2013 Lazar et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128170614958.pdf 1218KB PDF download
Figure 4. 122KB Image download
Figure 3. 37KB Image download
Figure 2. 146KB Image download
Figure 1. 76KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 2011, 61:69-90.
  • [2]Malvezzi M, Arfé A, Bertuccio P, Levi F, La Vecchia C, Negri E: European cancer mortality predictions for the year 2011. Ann Oncol 2011, 22:947-956.
  • [3]Bosetti C, Levi F, Lucchini F, Negri E, La Vecchia C: Lung cancer mortality in European women: recent trends and perspectives. Ann Oncol 2005, 16:1597-1604.
  • [4]Spiro SG, Silvestri GA: One hundred years of lung cancer. Am J Respir Crit Care Med 2005, 172:523-529.
  • [5]Cagle PT, Allen TC, Dacic S, Beasley MB, Borczuk AC, Chirieac LR, Laucirica R, Ro JY, Kerr KM: Revolution in lung cancer: new challenges for the surgical pathologist. Arch Pathol Lab Med 2011, 135:110-116.
  • [6]Tumor Analysis Best Practices Working Group: Expression profiling–best practices for data generation and interpretation in clinical trials. Nat Rev Genet 2004, 5:229-237.
  • [7]Olshen AB, Venkatraman ES, Lucito R, Wigler M: Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 2004, 5(4):557-572.
  • [8]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Statist Soc B 1995, 57:289-300.
  • [9]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80. BioMed Central Full Text
  • [10]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3(1):3.
  • [11]Suo C, Salim A, Chia KS, Pawitan Y, Calza S: Modified least-variant set normalization for miRNA microarray. RNA 2010, 16(12):2293-2303.
  • [12]Akavia UD, Litvin O, Kim J, Sanchez-Garcia F, Kotliar D, Causton HC, Pochanard P, Mozes E, Garraway LA, Pe’er D: An integrated approach to uncover drivers of cancer. Cell 2010, 143:1005-1017.
  • [13]Teo SM, Pawitan Y, Kumar V, Thalamuthu A, Seielstad M, Chia KS, Salim A: Multi-platform segmentation for joint detection of copy number variants. Bioinformatics 2011, 27(11):1555-1561.
  • [14]Teo SM, Salim A, Calza S, Ku CS, Chia KS, Pawitan Y: Identification of recurrent regions of copy-number variants across multiple individuals. BMC Bioinforma 2010, 11:147. BioMed Central Full Text
  • [15]Lee W, Lee D, Lee Y, Pawitan Y: Sparse canonical covariance analysis for high-throughput data. Stat Appl Genet Mol Biol 2011, 10(1):30.
  • [16]Alexeyenko A, Lee W, Pernemalm M, Guegan J, Dessen P, Lazar V, Lehtiö J, Pawitan Y: Network enrichment analysis: extension of gene-set enrichment analysis to gene networks. BMC Bioinforma 2012, 13:226. BioMed Central Full Text
  • [17]Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34:140-144.
  • [18]Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, Joshi MB, Harpole D, Lancaster JM, Berchuck A, Olson JA Jr, Marks JR, Dressman HK, West M, Nevins JR: Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006, 439(7074):353-357.
  • [19]Lu Y, Govindan R, Wang L, Liu PY, Goodgame B, Wen W, Sezhiyan A, Pfeifer J, Li YF, Hua X, Wang Y, Yang P, You M: MicroRNA profiling and prediction of recurrence/relapse-free survival in stage I lung cancer. Carcinogenesis 2012, 0:1-9. doi:10.1093/carcin/bgs100
  • [20]Chitale D, Gong Y, Taylor BS, Broderick S, Brennan C, Somwar R, Golas B, Wang L, Motoi N, Szoke J, Reinersman JM, Major J, Sander C, Seshan VE, Zakowski MF, Rusch V, Pao W, Gerald W, Ladanyi M: An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene 2009, 28(31):2773-2783. doi: 10.1038/onc.2009.135. Epub 2009 Jun 15
  • [21]Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T, Lee J, Jung YJ, Kim JO, Yu SB: The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res 2012, 22(11):2109-2119. doi:10.1101/gr.145144.112
  • [22]Ju YS, Lee WC, Shin JY, Lee S, Bleazard T, Won JK, Kim YT, Kim JI, Kang JH, Seo JS: A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res 2012, 13:436-445. doi: 10.1101/gr.133645.111
  • [23]Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, Cho J, Suh J, Capelletti M, Sivachenko A, Sougnez C, Auclair D, Lawrence MS, Stojanov P, Cibulskis K, Choi K, De Waal L, Sharifnia T, Brooks A, Greulich H, Banerji S, Zander T, Seidel D, Leenders F, Ansén S, Ludwig C, Engel-Riedel W, Stoelben E, Wolf J, Goparju C, et al.: Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 2012, 150:1107-1120.
  • [24]Cancer Genome Atlas Research Network: Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012, 489:519-525.
  • [25]Borczuk AC, Powell CA: Expression profiling and lung cancer development. Proc Am Thorac Soc 2007, 4:127-132.
  • [26]López-Malpartida AV, Ludeña MD, Varela G, García PJ: Differential ErbB receptor expression and intracellular signaling activity in lung adenocarcinomas and squamous cell carcinomas. Lung Cancer 2009, 65:25-33.
  • [27]Da Cunha SG, Saieg MA, Geddie W, Leighl N: EGFR gene status in cytological samples of nonsmall cell lung carcinoma: controversies and opportunities. Cancer Cytopathol 2011, 119:80-91.
  • [28]Koo JS, Kim SH: EGFR and HER-2 status of non-small cell lung cancer brain metastasis and corresponding primary tumor. Neoplasma 2011, 58:27-34.
  • [29]Gill RK, Vazquez MF, Kramer A, Hames M, Zhang L, Heselmeyer-Haddad K, Ried T, Shilo K, Henschke C, Yankelevitz D, Jen J: The use of genetic markers to identify lung cancer in fine needle aspiration samples. Clin Cancer Res 2008, 14:7481-7487.
  • [30]Donati V, Boldrini L, Dell’Omodarme M, Prati MC, Faviana P, Camacci T, Lucchi M, Mussi A, Santoro M, Basolo F, Fontanini G: Osteopontin expression and prognostic significance in non-small cell lung cancer. Clin Cancer Res 2005, 11:6459-6465.
  • [31]Tang L, Dai DL, Su M, Martinka M, Li G, Zhou Y: Aberrant expression of collagen triple helix repeat containing 1 in human solid cancers. Clin Cancer Res 2006, 12:3716-3722.
  • [32]Mulvihill MS, Kwon YW, Lee S, Fang LT, Choi H, Ray R, Kang HC, Mao JH, Jablons D, Kim IJ: Gremlin is overexpressed in lung adenocarcinoma and increases cell growth and proliferation in normal lung cells. PLoS One 2012, 7:e42264.
  • [33]Kim M, Yoon S, Lee S, Ha SA, Kim HK, Kim JW, Chung J: Gremlin-1 induces BMP-independent tumor cell proliferation, migration, and invasion. PLoS One 2012, 7(4):e35100. doi: 10.1371/journal.pone.0035100
  • [34]Pecchio F, Rapellino M, Baldi S, Casali V, Libertucci D, Coni F: Tumor-associated trypsin inhibitor (TATI) in the diagnosis of lung cancer. Scand J Clin Lab Invest Suppl 1991, 207:63-64.
  • [35]Chen J, Ye L, Xie F, Yang Y, Zhang L, Jiang WG: Expression of bone morphogenetic protein 7 in lung cancer and its biological impact on lung cancer cells. Anticancer Res 2010, 30:1113-1120.
  • [36]Azuma K, Kawahara A, Hattori S, Taira T, Tsurutani J, Watari K, Shibata T, Murakami Y, Takamori S, Ono M, Izumi H, Kage M, Yanagawa T, Nakagawa K, Hoshino T, Kuwano M: NDRG1/Cap43/Drg-1 may predict tumor angiogenesis and poor outcome in patients with lung cancer. J Thorac Oncol 2012, 7(5):779-789.
  • [37]Sasaki H, Yukiue H, Kobayashi Y, Moriyama S, Nakashima Y, Kaji M, Fukai I, Kiriyama M, Yamakawa Y, Fujii Y: Expression of the sensitive to apoptosis gene, SAG, as a prognostic marker in nonsmall cell lung cancer. Int J Cancer 2001, 95(6):375-377.
  文献评价指标  
  下载次数:52次 浏览次数:27次