BMC Research Notes | |
In silico work flow for scaffold hopping in Leishmania | |
Rahul Banerjee3  Nanda Ghoshal1  Dhananjay Bhattacharyya2  Ambarnil Ghosh3  Barnali Waugh3  | |
[1] Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India;Computer Science Division, Saha Institute of Nuclear Physics, Sector-1, Block AF, Biddhannagar, Kolkata 700064, India;Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Sector - 1, Block – AF, Bidhannagar, Kolkata 700064, India | |
关键词: Scaffold hopping; Pharamacophore; Drug targets; Leishmaniasis; | |
Others : 1125627 DOI : 10.1186/1756-0500-7-802 |
|
received in 2014-05-01, accepted in 2014-10-29, 发布年份 2014 | |
【 摘 要 】
Background
Leishmaniasis,a broad spectrum of diseases caused by several sister species of protozoa belonging to family trypanosomatidae and genus leishmania , generally affects poorer sections of the populace in third world countries. With the emergence of strains resistant to traditional therapies and the high cost of second line drugs which generally have severe side effects, it becomes imperative to continue the search for alternative drugs to combat the disease. In this work, the leishmanial genomes and the human genome have been compared to identify proteins unique to the parasite and whose structures (or those of close homologues) are available in the Protein Data Bank. Subsequent to the prioritization of these proteins (based on their essentiality, virulence factor etc.), inhibitors have been identified for a subset of these prospective drug targets by means of an exhaustive literature survey. A set of three dimensional protein-ligand complexes have been assembled from the list of leishmanial drug targets by culling structures from the Protein Data Bank or by means of template based homology modeling followed by ligand docking with the GOLD software. Based on these complexes several structure based pharmacophores have been designed and used to search for alternative inhibitors in the ZINC database.
Result
This process led to a list of prospective compounds which could serve as potential antileishmanials. These small molecules were also used to search the Drug Bank to identify prospective lead compounds already in use as approved drugs. Interestingly, paromomycin which is currently being used as an antileishmanial drug spontaneously appeared in the list, probably giving added confidence to the ‘scaffold hopping’ computational procedures adopted in this work.
Conclusions
The report thus provides the basis to experimentally verify several lead compounds for their predicted antileishmanial activity and includes several useful data bases of prospective drug targets in leishmania, their inhibitors and protein – inhibitor three dimensional complexes.
【 授权许可】
2014 Waugh et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150217023059733.pdf | 1842KB | download | |
Figure 3. | 71KB | Image | download |
Figure 2. | 133KB | Image | download |
Figure 1. | 115KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M: Leishmaniasis worldwide and global estimates of its incidence. PLoS One 2012, 7(5):e35671.
- [2]Killick-Kendrick R: The life-cycle of Leishmania in the sandfly with special reference to the form infective to the vertebrate host. Ann Parasitol Hum Comp 1990, 65(Suppl 1):37-42.
- [3]Ashutosh Sundar S, Goyal N: Molecular mechanisms of antimony resistance in Leishmania. J Med Microbiol 2007, 56(Pt 2):143-153.
- [4]Jeddi F, Piarroux R, Mary C: Antimony resistance in leishmania, focusing on experimental research. J Trop Med 2011, 2011:695382.
- [5]Rojas R, Valderrama L, Valderrama M, Varona MX, Ouellette M, Saravia NG: Resistance to antimony and treatment failure in human Leishmania (Viannia) infection. J Infect Dis 2006, 193(10):1375-1383.
- [6]Ouellette M, Drummelsmith J, Papadopoulou B: Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resist Updat 2004, 7(4–5):257-266.
- [7]Guerin PJ, Olliaro P, Sundar S, Boelaert M, Croft SL, Desjeux P, Wasunna MK, Bryceson AD: Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis 2002, 2(8):494-501.
- [8]Hopkins AL, Groom CR: The druggable genome. Nat Rev Drug Discov 2002, 1(9):727-730.
- [9]Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Böhme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UC, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, et al.: The genome of the African trypanosome Trypanosoma brucei. Science 2005, 309(5733):416-422.
- [10]El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, et al.: The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 2005, 309(5733):409-415.
- [11]El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, Ghedin E, Peacock C, Bartholomeu DC, Haas BJ, Tran AN, Wortman JR, Alsmark UC, Angiuoli S, Anupama A, Badger J, Bringaud F, Cadag E, Carlton JM, Cerqueira GC, Creasy T, Delcher AL, Djikeng A, Embley TM, Hauser C, Ivens AC, et al.: Comparative genomics of trypanosomatid parasitic protozoa. Science 2005, 309(5733):404-409.
- [12]Ghedin E, Bringaud F, Peterson J, Myler P, Berriman M, Ivens A, Andersson B, Bontempi E, Eisen J, Angiuoli S, Wanless D, Von Arx A, Murphy L, Lennard N, Salzberg S, Adams MD, White O, Hall N, Stuart K, Fraser CM, El-Sayed NM: Gene synteny and evolution of genome architecture in trypanosomatids. Mol Biochem Parasitol 2004, 134(2):183-191.
- [13]Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, Peters N, Adlem E, Tivey A, Aslett M, Kerhornou A, Ivens A, Fraser A, Rajandream MA, Carver T, Norbertczak H, Chillingworth T, Hance Z, Jagels K, Moule S, Ormond D, Rutter S, Squares R, Whitehead S, Rabbinowitsch E, Arrowsmith C, White B, Thurston S, Bringaud F, Baldauf SL, et al.: Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 2007, 39(7):839-847.
- [14]Fairlamb AH: Novel biochemical pathways in parasitic protozoa. Parasitology 1989, 99(Suppl):S93-S112.
- [15]Croft SL, Coombs GH: Leishmaniasis–current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 2003, 19(11):502-508.
- [16]Aguero F, Al-Lazikani B, Aslett M, Berriman M, Buckner FS, Campbell RK, Carmona S, Carruthers IM, Chan AW, Chen F, Crowther GJ, Doyle MA, Hertz-Fowler C, Hopkins AL, McAllister G, Nwaka S, Overington JP, Pain A, Paolini GV, Pieper U, Ralph SA, Riechers A, Roos DS, Sali A, Shanmugam D, Suzuki T, Van Voorhis WC, Verlinde CL: Genomic-scale prioritization of drug targets: the TDR Targets database. Nat Rev Drug Discov 2008, 7(11):900-907.
- [17]Hu W, Sillaots S, Lemieux S, Davison J, Kauffman S, Breton A, Linteau A, Xin C, Bowman J, Becker J, Jiang B, Roemer T: Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog 2007, 3(3):e24.
- [18]Schneider P, Tanrikulu Y, Schneider G: Self-organizing maps in drug discovery: compound library design, scaffold-hopping, repurposing. Curr Med Chem 2009, 16(3):258-266.
- [19]Sekhon BS, Bimal N: Scaffold hopping in drug discovery. RGUHS J Pharm Sci 2012, 2(4):10.
- [20]Tsunoyama K, Amini A, Sternberg MJ, Muggleton SH: Scaffold hopping in drug discovery using inductive logic programming. J Chem Inf Model 2008, 48(5):949-957.
- [21]Böhm H-J, Flohr A, Stahl M: Scaffold hopping. Drug Discov Today: Technologies 2004, 1(3):217-224.
- [22]Kaminski JJ, Rane D, Snow ME, Weber L, Rothofsky ML, Anderson SD, Lin SL: Identification of novel farnesyl protein transferase inhibitors using three-dimensional database searching methods. J Med Chem 1997, 40(25):4103-4112.
- [23]De Lucca GV, Lam PY: De novo design, discovery and development of cyclic urea HIV protease inhibitors. Drugs Future 1998, 23(9):987-994.
- [24]De Esch IJ, Mills JE, Perkins TD, Romeo G, Hoffmann M, Wieland K, Leurs R, Menge WM, Nederkoorn PH, Dean PM: Development of a pharmacophore model for histamine H3 receptor antagonists, using the newly developed molecular modeling program SLATE. J Med Chem 2001, 44(11):1666-1674.
- [25]Barreca ML, Gitto R, Quartarone S, De Luca L, De Sarro G, Chimirri A: Pharmacophore modeling as an efficient tool in the discovery of novel noncompetitive AMPA receptor antagonists. J Chem Inf Comput Sci 2003, 43(2):651-655.
- [26]Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL: BLAST+: architecture and applications. BMC Bioinformatics 2009, 10(1):421. BioMed Central Full Text
- [27]Lopez C, Chevalier N, Hannaert V, Rigden DJ, Michels PAM, Ramirez JL: Leishmania donovani phosphofructokinase gene characterization, biochemical properties and structure modeling studies. Eur J Biochem 2002, 269:3978-3989.
- [28]Nowicki MW, Tullock LB, Woralll L, McNae IW, Hannaert V, Michels PAM, Fothergill-Gilmore LA, Walkinshaw MD, Turner NJ: Design, synthesis and trypanocidal activity of lead compounds based on inhibitors of parasite glycolysis. Bioorg Med Chem 2008, 16:5050-5061.
- [29]Verlinde CLMJ, Hannaert V, Blonski C, Willson M, Perie JJ, Fothergill-Gilmore LA, Opperdoes FR, Gelb MH, Hol WGJ, Michels PAM: Glycolysis as a target for the design of new anti – trypanosome drugs. Drug Resist Updat 2001, 4:50-65.
- [30]Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahrén D, Tsoka S, Darzentas N, Kunin V, López-Bigas N: Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 2005, 33(19):6083-6089.
- [31]Kuntal BK, Aparoy P, Reddanna P: EasyModeller: a graphical interface to MODELLER. BMC Res Notes 2010, 3(1):226. BioMed Central Full Text
- [32]Holm L, Rosenström P: Dali server: conservation mapping in 3D. Nucleic Acids Res 2010, 38(suppl 2):W545-W549.
- [33]Gordon MS, Schmidt MW: Advances in electronic structure theory: GAMESS a decade later. 2005, 1167-1189. [Theory and Applications of Computational Chemistry: the first forty years]
- [34]Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S: General atomic and molecular electronic structure system. J Comput Chem 1993, 14(11):1347-1363.
- [35]Hawkins PC, Skillman AG, Warren GL, Ellingson BA, Stahl MT: Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J Chem Inf Model 2010, 50(4):572-584.
- [36]Li L, Stoeckert CJ Jr, Roos DS: OrthoMCL : identification of ortholog groups for eukaryotic genomes. Genome Res 2003, 13(9):2178-2189.
- [37]Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, Paley S, Rhee SY, Shearer AG, Tissier C: The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 2008, 36(suppl 1):D623-D631.
- [38]Logan-Klumpler FJ, De Silva N, Boehme U, Rogers MB, Velarde G, McQuillan JA, Carver T, Aslett M, Olsen C, Subramanian S, Phan I, Farris C, Mitra S, Ramasamy G, Wang H, Tivey A, Jackson A, Houston R, Parkhill J, Holden M, Harb OS, Brunk BP, Myler PJ, Roos D, Carrington M, Smith DF, Hertz-Fowler C, Berriman M: GeneDB - an annotation database for pathogens. Nucleic Acids Res 2012, 40(D1):D98-D108.
- [39]Leifso K, Cohen-Freue G, Dogra N, Murray A, McMaster WR: Genomic and proteomic expression analysis of leishmania promastigote and amastigote life stages : the leishmania genome is constitutively expressed. Mol Biochem Parasitol 2007, 152(1):35-46.
- [40]Krauth-Siegel RL, Meiering SK, Schmidt H: The parasite-specific trypanothione metabolism of Trypanosoma and Leishmania. Biol Chem 2003, 384(4):539-549.
- [41]Olin-Sandoval V, Moreno-Sanchez R, Saavedra E: Targeting trypanothione metabolism in trypanosomatid human parasites. Curr Drug Targets 2010, 11(12):1614-1630.
- [42]Irigoín F, Cibils L, Comini MA, Wilkinson SR, Flohé L, Radi R: Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radic Biol Med 2008, 45(6):733-742.
- [43]Iribarne F, Paulino M, Aguilera S, Murphy M, Tapia O: Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites. Mol Modeling Annu 2002, 8(5):173-183.
- [44]Ariza A, Vickers TJ, Greig N, Armour KA, Dixon MJ, Eggleston IM, Fairlamb AH, Bond CS: Specificity of the trypanothione‒dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme. Mol Microbiol 2006, 59(4):1239-1248.
- [45]Oppenheimer M, Valenciano AL, Sobrado P: Biosynthesis of galactofuranose in kinetoplastids: novel therapeutic targets for treating leishmaniasis and Chagas’ disease. Enzyme Res 2011, 2011:415976.
- [46]Lamerz A-C, Damerow S, Kleczka B, Wiese M, Van Zandbergen G, Lamerz J, Wenzel A, Hsu F-F, Turk J, Beverley SM: Deletion of UDP-glucose pyrophosphorylase reveals a UDP-glucose independent UDP-galactose salvage pathway in Leishmania major. Glycobiology 2010, 20(7):872-882.
- [47]Urbaniak MD, Tabudravu JN, Msaki A, Matera KM, Brenk R, Jaspars M, Ferguson MA: Identification of novel inhibitors of UDP-Glc 4’-epimerase, a validated drug target for African sleeping sickness. Bioorg Med Chem Lett 2006, 16(22):5744-5747.
- [48]Majumder HK: Drug Targets in Kinetoplastid Parasites. In Springer Series: Advances in Experimental Medicine and Biology Vol. 625. New York: Landes Bioscience /Springer Science + Business Media, LLC; 2008.
- [49]Boitz JM, Strasser R, Yates PA, Jardim A, Ullman B: Adenylosuccinate Synthetase and Adenylosuccinate Lyase Deficiencies Trigger Growth and Infectivity Deficits in Leishmania donovani. J Biol Chem 2013, 288(13):8977-8990.
- [50]Boitz JM, Strasser R, Hartman CU, Jardim A, Ullman B: Adenine Aminohydrolase from Leishmania donovani unique enzyme in parasite purine metabolism. J Biol Chem 2012, 287(10):7626-7639.
- [51]French JB, Yates PA, Soysa DR, Boitz JM, Carter NS, Chang B, Ullman B, Ealick SE: The Leishmania donovani UMP synthase is essential for promastigote viability and has an unusual tetrameric structure that exhibits substrate-controlled oligomerization. J Biol Chem 2011, 286(23):20930-20941.
- [52]Hemsworth GR, Moroz OV, Fogg MJ, Scott B, Bosch-Navarrete C, González-Pacanowska D, Wilson KS: The crystal structure of the Leishmania major deoxyuridine triphosphate nucleotidohydrolase in complex with nucleotide analogues, dUMP, and deoxyuridine. J Biol Chem 2011, 286(18):16470-16481.
- [53]Michels PA, Bringaud F, Herman M, Hannaert V: Metabolic functions of glycosomes in trypanosomatids. Biochimica et Biophysica Acta (BBA)-Mol-Cell Res 2006, 1763(12):1463-1477.
- [54]Schüttelkopf AW, Hardy LW, Beverley SM, Hunter WN: Structures of Leishmania major Pteridine Reductase Complexes Reveal the Active Site Features Important for Ligand Binding and to Guide Inhibitor Design. J Mol Biol 2005, 352(1):105-116.
- [55]Hardy L, Matthews W, Nare B, Beverley S: Biochemical and Genetic Tests for Inhibitors of Leishmania Pteridine Pathways. Exp Parasitol 1997, 87(3):158-170.
- [56]Silva-Almeida M, Pereira BAS, Ribeiro-Guimarães ML, Alves CR: Proteinases as virulence factors in Leishmania spp. infection in mammals. Parasites Vectors 2012, 5(1):1-10. BioMed Central Full Text
- [57]Silverman JM, Chan SK, Robinson DP, Dwyer DM, Nandan D, Foster LJ, Reiner NE: Proteomic analysis of the secretome of Leishmania donovani. Genome Biol 2008, 9(2):R35. BioMed Central Full Text
- [58]Alves JM, Klein CC, da Silva FM, Costa-Martins AG, Serrano MG, Buck GA, Vasconcelos ATR, Sagot M-F, Teixeira MM, Motta MCM: Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evol Biol 2013, 13(1):190. BioMed Central Full Text
- [59]Patterson S, Alphey MS, Jones DC, Shanks EJ, Street IP, Frearson JA, Wyatt PG, Gilbert IH, Fairlamb AH: Dihydroquinazolines as a novel class of Trypanosoma brucei trypanothione reductase inhibitors: discovery, synthesis, and characterization of their binding mode by protein crystallography. J Med Chem 2011, 54(19):6514-6530.
- [60]Zhang Y, Bond CS, Bailey S, Cunningham ML, Fairlamb AH, Hunter WN: The crystal structure of trypanothione reductase from the human pathogen Trypanosoma cruzi at 2.3 Å resolution. Protein Sci 1996, 5(1):52-61.
- [61]Riley-Lovingshimer MR, Ronning DR, Sacchettini JC, Reinhart GD: Reversible ligand-induced dissociation of a tryptophan-shift mutant of phosphofructokinase from Bacillus stearothermophilus. Biochemistry 2002, 41(43):12967-12974.
- [62]Harkiolaki M, Dodson EJ, Bernier-Villamor V, Turkenburg JP, González-Pacanowska D, Wilson KS: The crystal structure of Trypanosoma cruzi dUTPase reveals a novel dUTP/dUDP binding fold. Structure 2004, 12(1):41-53.
- [63]Shi W, Schramm VL, Almo SC: Nucleoside hydrolase from Leishmania major Cloning, expression, catalytic properties, transition state inhibitors, and the 2.5-Å crystal structure. J Biol Chem 1999, 274(30):21114-21120.
- [64]Ben Salah A, Ben Messaoud N, Guedri E, Zaatour A, Ben Alaya N, Bettaieb J, Gharbi A, Belhadj Hamida N, Boukthir A, Chlif S, Abdelhamid K, El Ahmadi Z, Louzir H, Mokni M, Morizot G, Buffet P, Smith PL, Kopydlowski KM, Kreishman-Deitrick M, Smith KS, Nielsen CJ, Ullman DR, Norwood JA, Thorne GD, McCarthy WF, Adams RC, Rice RM, Tang D, Berman J, Ransom J, et al.: Topical Paromomycin with or without gentamicin for cutaneous Leishmaniasis. N Engl J Med 2013, 368:524-532.