期刊论文详细信息
BMC Developmental Biology
Embryonic and larval development in the Midas cichlid fish species flock (Amphilophus spp.): a new evo-devo model for the investigation of adaptive novelties and species differences
Axel Meyer1  Maggie M Sefton1  Claudius F Kratochwil2 
[1] International Max Planck Research School for Organismal Biology, University of Konstanz, Konstanz, Germany;Zukunftskolleg, University of Konstanz, Konstanz, Germany
关键词: Amphilophus xiloaensis;    Amphilophus citrinellus;    Xanthophore;    Melanophore;    Pigmentation;    Cichlidae;    Phenotypic diversification;    Parallel evolution;    Ontogeny;    Teleostei;   
Others  :  1161040
DOI  :  10.1186/s12861-015-0061-1
 received in 2014-09-29, accepted in 2015-02-16,  发布年份 2015
PDF
【 摘 要 】

Background

Central American crater lake cichlid fish of the Midas species complex (Amphilophus spp.) are a model system for sympatric speciation and fast ecological diversification and specialization. Midas cichlids have been intensively analyzed from an ecological and morphological perspective. Genomic resources such as transcriptomic and genomic data sets, and a high-quality draft genome are available now. Many ecologically relevant species-specific traits and differences such as pigmentation and cranial morphology arise during development. Detailed descriptions of the early development of the Midas cichlid in particular, will help to investigate the ontogeny of species differences and adaptations.

Results

We describe the embryonic and larval development of the crater lake cichlid, Amphilophus xiloaensis, until seven days after fertilization. Similar to previous studies on teleost development, we describe six periods of embryogenesis - the zygote, cleavage, blastula, gastrula, segmentation, and post-hatching period. Furthermore, we define homologous stages to well-described teleost models such as medaka and zebrafish, as well as other cichlid species such as the Nile tilapia and the South American cichlid Cichlasoma dimerus. Key morphological differences between the embryos of Midas cichlids and other teleosts are highlighted and discussed, including the presence of adhesive glands and different early chromatophore patterns, as well as variation in developmental timing.

Conclusions

The developmental staging of the Midas cichlid will aid researchers in the comparative investigation of teleost ontogenies. It will facilitate comparative developmental biological studies of Neotropical and African cichlid fish in particular. In the past, the species flocks of the African Great Lakes have received the most attention from researchers, but some lineages of the 300–400 species of Central American lakes are fascinating model systems for adaptive radiation and rapid phenotypic evolution. The availability of genetic resources, their status as a model system for evolutionary research, and the possibility to perform functional experiments including transgenesis makes the Midas cichlid complex a very attractive model for evolutionary-developmental research.

【 授权许可】

   
2015 Kratochwil et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150412012015910.pdf 6546KB PDF download
Figure 10. 46KB Image download
Figure 9. 56KB Image download
Figure 8. 185KB Image download
Figure 7. 126KB Image download
Figure 6. 79KB Image download
Figure 5. 119KB Image download
Figure 4. 63KB Image download
Figure 3. 37KB Image download
Figure 2. 122KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Salzburger W, Meyer A: The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics. Naturwissenschaften 2004, 91:277-90.
  • [2]Barluenga M, Stölting KN, Salzburger W, Muschick M, Meyer A: Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 2006, 439:719-23.
  • [3]Stiassny ML, Meyer A: Cichlids of the rift lakes. Sci Am 1999, 280:64-9.
  • [4]Meyer A, Kocher TD, Basasibwaki P, Wilson AC: Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 1990, 347:550-3.
  • [5]Elmer KR, Lehtonen TK, Fan S, Meyer A: Crater lake colonization by neotropical cichlid fishes. Evolution 2013, 67:281-8.
  • [6]Elmer KR, Fan S, Kusche H, Luise Spreitzer M, Kautt AF, Franchini P, et al.: Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nat Commun 2014, 5:5168.
  • [7]Kautt AF, Elmer KR, Meyer A: Genomic signatures of divergent selection and speciation patterns in a “natural experiment”, the young parallel radiations of Nicaraguan crater lake cichlid fishes. Mol Ecol 2012, 21:4770-86.
  • [8]Günther A. On some new species of Central American fishes. Proc Zool Soc. 1864;1:23–27
  • [9]Günther A. Report of a collection of fishes made by Messrs. Dow, Godman, and Salvin in Guatemala. Proc Zool Soc. 1864;1:144–54.
  • [10]Barlow GW, Munsey JW. The red devil-Midas-arrow cichlid species complex in Nicaragua. In Investigations of the ichthyofauna of Nicaraguan lakes. Edited by Thorson TB. Lincoln: School of Life Sciences, University of Nebraska-Lincoln; 1976;359–69.
  • [11]Geiger MF, McCrary JK, Stauffer JR Jr: Description of two new species of the Midas cichlid complex (Teleostei: Cichlidae) from Lake Apoyo, Nicaragua. Proceedings of the Biological Society of Washington 2010, 123(2):159-73.
  • [12]Stauffer JRJ, McCrary JK, Black KE: Three new species of cichlid fishes (Teleostei : Cichlidae) from Lake Apoyo, Nicaragua. Proceedings of the Biological Society of Washington 2008, 121:117-29.
  • [13]Stauffer JR Jr, McKaye KR: Descriptions of three New species of Cichlid fishes (Teleostei: Cichlidae) from Lake Xiloá, Nicaragua. Cuadernos de Investigación de la UCA 2002, 12:1-18.
  • [14]Recknagel H, Kusche H, Elmer KR, Meyer A: Two new endemic species in the Midas cichlid species complex from Nicaraguan crater lakes: Amphilophus tolteca and Amphilophus viridis (Perciformes: Cichlidae). Aqua Int J Ichthyol 2013, 19:207-24.
  • [15]Elmer KR, Lehtonen TK, Kautt AF, Harrod C, Meyer A: Rapid sympatric ecological differentiation of crater lake cichlid fishes within historic times. BMC Biol 2010, 8:60. BioMed Central Full Text
  • [16]Geiger MF, McCrary JK, Schliewen UK: Not a simple case - A first comprehensive phylogenetic hypothesis for the Midas cichlid complex in Nicaragua (Teleostei: Cichlidae: Amphilophus). Mol Phylogenet Evol 2010, 56:1011-24.
  • [17]Kutterolf S, Freundt A, Perez W, Wehrmann H, Schmincke HU: Late Pleistocene to Holocene temporal succession and magnitudes of highly-explosive volcanic eruptions in west-central Nicaragua. J Volcanol Geotherm Res 2007, 163:55-82.
  • [18]Elmer KR, Fan S, Gunter HM, Jones JC, Boekhoff S, Kuraku S, et al.: Rapid evolution and selection inferred from the transcriptomes of sympatric crater lake cichlid fishes. Mol Ecol 2010, 19(Suppl 1):197-211.
  • [19]Elmer KR, Kusche H, Lehtonen TK, Meyer A: Local variation and parallel evolution: morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes. Philos Trans R Soc Lond B Biol Sci 2010, 365:1763-82.
  • [20]Rüber L, Verheyen E, Meyer A: Replicated evolution of trophic specializations in an endemic cichlid fish lineage from Lake Tanganyika. Proc Natl Acad Sci U S A 1999, 96:10230-5.
  • [21]Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, Fan S, et al.: The genomic substrate for adaptive radiation in African cichlid fish. Nature 2014, 513:375-81.
  • [22]Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of embryonic development of the zebrafish. Dev Dyn 1995, 203:253-310.
  • [23]Iwamatsu T: Stages of normal development in the medaka Oryzias latipes. Mech Dev 2004, 121:605-18.
  • [24]Swarup H: Stages in the development of the stickleback Gasterosteus aculeatus (L.). J Embryol Exp Morphol 1958, 6:373-83.
  • [25]Ballard WW: Normal embryonic stages for salmonid fishes, based on Salmo gairdneri Richardson and Salvelinus fontinalis (Mitchill). J Exp Zool 1973, 184:7-25.
  • [26]Fujimura K, Okada N: Development of the embryo, larva and early juvenile of Nile tilapia Oreochromis niloticus (Pisces: Cichlidae). Developmental staging system. Dev Growth Differ 2007, 49:301-24.
  • [27]Balon EK: Early ontogeny of Labeotropheus Ahl, 1927 (Mbuna, Cichlidae, Lake Malawi), with a discussion on advanced protective styles in fish reproduction and development. Environ Biol Fish 1977, 2:147-76.
  • [28]Holden KK, Bruton MN: A life-history approach to the early ontogeny of the Mozambique tilapia Oreochromis mossambicus (Pisces, Cichlidae). S Afr J Zool 1994, 41:173-91.
  • [29]Meijide FJ, Guerrero GA: Embryonic and larval development of a substrate-brooding cichlid Cichlasoma dimerus (Heckel, 1840) under laboratory conditions. J Zool 2000, 252:481-93.
  • [30]Balon EK. Die Entwicklung der Texas-Cichlide (Herichthys cyanoguttatus Baird et Girard) nach dem Schlüpfen. Zool Anz. 1960;162:339–55
  • [31]Balon EK: Embryonic Development of Cichlasoma nigrofasciatum (Günther). Vest Cesk Spolecnosti Zool 1960, 24:199-214.
  • [32]Jones AJ: The early development of substrate-brooding cichlids (Teleostei: Cichlidae) with a discussion of a new system of staging. J Morphol 1972, 136:255-72.
  • [33]Mattos DDC, Cardoso LD, Fosse PJ, Radael MC, Filho JCF, Manhães JV de A, et al. Description of the ontogenic and larval period of discus fish (Symphysodon aequifasciatus). Zygote. 2014;1–7
  • [34]Meyer A: Morphometrics and allometry in the trophically polymorphic cichlid fish, Cichlasoma citrinellum: Alternative adaptations and ontogenetic changes in shape. J Zool 1990, 221:237-60.
  • [35]Kunz YW: Developmental Biology of Teleost Fishes. Springer Science & Business Media, Dordrecht; 2004.
  • [36]Meyer A: Phylogenetic relationships and evolutionary processes in East African cichlid fishes. Trends Ecol Evol 1993, 8:279-84.
  • [37]Kuraku S, Meyer A: Genomic analysis of cichlid fish ‘natural mutants’. Curr Opin Genet Dev 2008, 18:551-8.
  • [38]Elmer KR, Meyer A: Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends Ecol Evol 2011, 26:298-306.
  • [39]Henning F, Meyer A: The evolutionary genomics of cichlid fishes: explosive speciation and adaptation in the postgenomic era. Annu Rev Genomics Hum Genet 2014, 15:417-41.
  • [40]Oldfield RG: Gonad development in Midas cichlids and the evolution of sex change in fishes. Evol Dev 2011, 13:352-60.
  • [41]Chellappa S, Câmara MR, Verani JR: Ovarian development in the Amazonian red discus, Symphysodon discus Heckel (Osteichthyes: Cichlidae). Braz J Biol 2005, 65:609-16.
  • [42]Amanze D, Iyengar A: The micropyle: a sperm guidance system in teleost fertilization. Development 1990, 109:495-500.
  • [43]Haffter P, Odenthal J, Mullins MC, Lin S, Farrell MJ, Vogelsang E, et al.: Mutations affecting pigmentation and shape of the adult zebrafish. Dev Genes Evol 1996, 206:260-76.
  • [44]Furutani-Seiki M, Wittbrodt J: Medaka and zebrafish, an evolutionary twin study. Mech Dev 2004, 121:629-37.
  • [45]Groppelli S, Pennati R, Sotgia C, De Bernardi F: Cement gland apparatus of the angelfish Pterophyllum scalare (Teleostei, Cichlidae): Functional morphology in comparison with adhesive organs of other Chordata. Italian Journal of Zoology 2003, 70:133-9.
  • [46]Pottin K, Hyacinthe C, Rétaux S: Conservation, development, and function of a cement gland-like structure in the fish Astyanax mexicanus. Proc Natl Acad Sci U S A 2010, 107:17256-61.
  • [47]Stainier DY: Zebrafish genetics and vertebrate heart formation. Nat Rev Genet 2001, 2:39-48.
  • [48]Keßler M, Just S, Rottbauer W: Ion flux dependent and independent functions of ion channels in the vertebrate heart: lessons learned from zebrafish. Stem Cells Int 2012, 2012:462161.
  • [49]Muschick M, Barluenga M, Salzburger W, Meyer A: Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation. BMC Evol Biol 2011, 11:116. BioMed Central Full Text
  • [50]Fan S, Elmer KR, Meyer A: Genomics of adaptation and speciation in cichlid fishes: recent advances and analyses in African and Neotropical lineages. Philos Trans R Soc Lond B Biol Sci 2012, 367:385-94.
  • [51]Manousaki T, Hull PM, Kusche H, Machado-Schiaffino G, Franchini P, Harrod C, et al.: Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua. Mol Ecol 2013, 22:650-69.
  • [52]Barluenga M, Meyer A: Phylogeography, colonization and population history of the Midas cichlid species complex (Amphilophus spp.) in the Nicaraguan crater lakes. BMC Evol Biol 2010, 10:326. BioMed Central Full Text
  • [53]Recknagel H, Elmer KR, Meyer A. A hybrid genetic linkage map of two ecologically and morphologically divergent Midas cichlid fishes (Amphilophus spp.) obtained by massively parallel DNA sequencing (ddRADSeq). G3. 2013;3:65–74.
  • [54]Schulte JE, O’Brien CS, Conte MA, O’Quin KE, Carleton KL: Interspecific variation in rx1 expression controls opsin expression and causes visual system diversity in african cichlid fishes. Mol Biol Evol 2014, 31:2297-308.
  • [55]Henning F, Lee HJ, Franchini P, Meyer A: Genetic mapping of horizontal stripes in Lake Victoria cichlid fishes: benefits and pitfalls of using RAD markers for dense linkage mapping. Mol Ecol 2014, 23:5224-40.
  • [56]Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HDJ, Miyagi R, et al.: Speciation through sensory drive in cichlid fish. Nature 2008, 455:620-6.
  • [57]Powder KE, Cousin H, McLinden GP, Craig Albertson R: A nonsynonymous mutation in the transcriptional regulator lbh is associated with cichlid craniofacial adaptation and neural crest cell development. Mol Biol Evol 2014, 31:3113-24.
  • [58]Albertson RC, Powder KE, Hu Y, Coyle KP, Roberts RB, Parsons KJ: Genetic basis of continuous variation in the levels and modular inheritance of pigmentation in cichlid fishes. Mol Ecol 2014, 23:5135-50.
  • [59]Roberts RB, Ser JR, Kocher TD: Sexual conflict resolved by invasion of a novel sex determiner in Lake Malawi cichlid fishes. Science 2009, 326:998-1001.
  • [60]Roberts RB, Hu Y, Albertson RC, Kocher TD: Craniofacial divergence and ongoing adaptation via the hedgehog pathway. Proc Natl Acad Sci U S A 2011, 108:13194-9.
  • [61]Chan YF, Marks ME, Jones FC, Villarreal G, Shapiro MD, Brady SD, et al.: Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 2010, 327:302-5.
  • [62]Colosimo PF, Hosemann KE, Balabhadra S, Villarreal G, Dickson M, Grimwood J, et al.: Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 2005, 307:1928-33.
  • [63]Cleves PA, Ellis NA, Jimenez MT, Nunez SM, Schluter D, Kingsley DM, et al.: Evolved tooth gain in sticklebacks is associated with a cis-regulatory allele of Bmp6. Proc Natl Acad Sci U S A 2014, 111:13912-7.
  • [64]Barluenga M, Meyer A: The Midas cichlid species complex: incipient sympatric speciation in Nicaraguan cichlid fishes? Mol Ecol 2004, 13:2061-76.
  • [65]Meyer A, Málaga-Trillo E: Vertebrate genomics: more fishy tales about Hox genes. Curr Biol 1999, 9:R210-3.
  • [66]Braasch I, Peterson SM, Desvignes T, McCluskey BM, Batzel P, Postlethwait JH. A new model army: Emerging fish models to study the genomics of vertebrate Evo-Devo. J Exp Zool B Mol Dev Evol. 2015, in press.
  • [67]Parsons KJ, Albertson RC: Unifying and generalizing the two strands of evo-devo. Trends Ecol Evol 2013, 28:584-91.
  • [68]Franchini P, Fruciano C, Spreitzer ML, Jones JC, Elmer KR, Henning F, et al.: Genomic architecture of ecologically divergent body shape in a pair of sympatric crater lake cichlid fishes. Mol Ecol 2014, 23:1828-45.
  • [69]Klingenberg CP, Barluenga M, Meyer A: Body shape variation in cichlid fishes of the Amphilophus citrinellus species complex. Biol J Linn Soc 2003, 80:397-408.
  • [70]Recknagel H, Elmer KR, Meyer A: Crater lake habitat predicts morphological diversity in adaptive radiations of cichlid fishes. Evolution 2014, 68:2145-55.
  • [71]Machado-Schiaffino G, Henning F, Meyer A: Species-specific differences in adaptive phenotypic plasticity in an ecologically relevant trophic trait: hypertrophic lips in midas cichlid fishes. Evolution 2014, 68:2086-91.
  • [72]Barlow GW: The Midas Cichlid in Nicaragua. In Investigations of the Ichthyofauna of Nicaraguan lakes. Edited by Thorson TB. University of Nebraska Press, Lincoln, NB; 1976:333-58.
  • [73]Henning F, Jones JC, Franchini P, Meyer A: Transcriptomics of morphological color change in polychromatic Midas cichlids. BMC Genomics 2013, 14:171. BioMed Central Full Text
  • [74]Torres Dowdall J, Machado-Schiaffino G, Kautt AF, Kusche H, Meyer A: Differential predation on the two colour morphs of Nicaraguan Crater lake Midas cichlid fish: implications for the maintenance of its gold dark polymorphism. Biol J Linn Soc 2014, 112:123-31.
  • [75]Elmer KR, Lehtonen TK, Meyer A: Color assortative mating contributes to sympatric divergence of neotropical cichlid fish. Evolution 2009, 63:2750-7.
  • [76]Ahi EP, Kapralova KH, Pálsson A, Maier VH, Gudbrandsson J, Snorrason SS, et al.: Transcriptional dynamics of a conserved gene expression network associated with craniofacial divergence in Arctic charr. Evodevo 2014, 5:40. BioMed Central Full Text
  • [77]Hedges SB, Dudley J, Kumar S: TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 2006, 22:2971-2.
  • [78]Kelsh RN, Brand M, Jiang YJ, Heisenberg CP, Lin S, Haffter P, et al.: Zebrafish pigmentation mutations and the processes of neural crest development. Development 1996, 123:369-89.
  • [79]Fujimura K, Kocher TD: Tol2-mediated transgenesis in tilapia (Oreochromis niloticus). Aquaculture 2011, 319:342-6.
  • [80]Juntti SA, Hu CK, Fernald RD: Tol2-mediated generation of a transgenic haplochromine cichlid Astatotilapia burtoni. PLoS One 2013, 8:e77647.
  • [81]Li M, Yang H, Zhao J, Fang L, Shi H, Li M, et al.: Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics 2014, 197:591-9.
  • [82]Le Pabic P, Scemama JL, Stellwag EJ: Role of Hox PG2 genes in Nile tilapia pharyngeal arch specification: implications for gnathostome pharyngeal arch evolution. Evol Dev 2010, 12:45-60.
  • [83]Kratochwil CF, Meyer A: Closing the genotype-phenotype gap: emerging technologies for evolutionary genetics in ecological model vertebrate systems. Bioessays 2015, 37:213-26.
  • [84]Kratochwil CF, Meyer A. Mapping active promoters by ChIP-seq profiling of H3K4me3 in cichlid fish - a first step to uncover cis-regulatory elements in ecological model teleosts. Mol Ecol Resour. 2015, in press.
  • [85]Odenthal J, Rossnagel K, Haffter P, Kelsh RN, Vogelsang E, Brand M, et al.: Mutations affecting xanthophore pigmentation in the zebrafish, Danio rerio. Development 1996, 123:391-8.
  • [86]Salzburger W, Braasch I, Meyer A: Adaptive sequence evolution in a color gene involved in the formation of the characteristic egg-dummies of male haplochromine cichlid fishes. BMC Biol 2007, 5:51. BioMed Central Full Text
  • [87]Kimura T, Nagao Y, Hashimoto H, Yamamoto-Shiraishi Y-I, Yamamoto S, Yabe T, et al.: Leucophores are similar to xanthophores in their specification and differentiation processes in medaka. Proc Natl Acad Sci U S A 2014, 111:7343-8.
  文献评价指标  
  下载次数:104次 浏览次数:24次