期刊论文详细信息
BMC Genomics
Highlights of glycosylation and adhesion related genes involved in myogenesis
Jean-Michel Petit1  Fabrice Dupuy1  Abderrahman Maftah1  James Saliba1  Anne Da Silva1  Vincent Grassot1 
[1]INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
关键词: Chst5;    Early adipogenesis;    ITGA11;    Integrins;    Adhesion;    Myogenesis;    C2C12;    Satellite cells;    Glycosylation related genes;   
Others  :  1216415
DOI  :  10.1186/1471-2164-15-621
 received in 2014-07-11, accepted in 2014-07-14,  发布年份 2014
PDF
【 摘 要 】

Background

Myogenesis is initiated by myoblast differentiation and fusion to form myotubes and muscle fibres. A population of myoblasts, known as satellite cells, is responsible for post-natal growth of muscle and for its regeneration. This differentiation requires many changes in cell behaviour and its surrounding environment. These modifications are tightly regulated over time and can be characterized through the study of changes in gene expression associated with this process. During the initial myogenesis steps, using the myoblast cell line C2C12 as a model, Janot et al. (2009) showed significant variations in expression for genes involved in pathways of glycolipid synthesis. In this study we used murine satellite cells (MSC) and their ability to differentiate into myotubes or early fat storage cells to select glycosylation related genes whose variation of expression is myogenesis specific.

Results

The comparison of variant genes in both MSC differentiation pathways identified 67 genes associated with myogenesis. Comparison with data obtained for C2C12 revealed that only 14 genes had similar expression profiles in both cell types and that 17 genes were specifically regulated in MSC. Results were validated statistically by without a priori clustering. Classification according to protein function encoded by these 31 genes showed that the main regulated cellular processes during this differentiation were (i) remodeling of the extracellular matrix, particularly, sulfated structures, (ii) down-regulation of O-mannosyl glycan biosynthesis, and (iii) an increase in adhesion protein expression. A functional study was performed on Itga11 and Chst5 encoding two highly up-regulated proteins. The inactivation of Chst5 by specific shRNA delayed the fusion of MSC. By contrast, the inactivation of Itga11 by specific shRNA dramatically decreased the fusion ability of MSC. This result was confirmed by neutralization of Itga11 product by specific antibodies.

Conclusions

Our screening method detected 31 genes specific for myogenic differentiation out of the 383 genes studied. According to their function, interaction networks of the products of these selected genes converged to cell fusion. Functional studies on Itga11 and Chst5 demonstrated the robustness of this screening.

【 授权许可】

   
2014 Grassot et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150630103939153.pdf 2738KB PDF download
Figure 12. 51KB Image download
Figure 11. 29KB Image download
Figure 10. 42KB Image download
Figure 9. 29KB Image download
Figure 8. 25KB Image download
Figure 7. 24KB Image download
Figure 6. 62KB Image download
Figure 5. 30KB Image download
Figure 4. 78KB Image download
Figure 3. 53KB Image download
Figure 2. 23KB Image download
Figure 1. 31KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

【 参考文献 】
  • [1]Asakura A, Komaki M, Rudnicki M: Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 2001, 68:245-253.
  • [2]Church JCT, Noronha RFX, Allbrook DB: Satellite cells and skeletal muscle regeneration. Br J Surg 1966, 53:638-642.
  • [3]Le Grand F, Rudnicki M: Satellite and stem cells in muscle growth and repair. Development 2007, 134:3953-3957.
  • [4]Relaix F, Zammit PS: Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 2012, 139:2845-2856.
  • [5]Aguiari P, Leo S, Zavan B, Vindigni V, Rimessi A, Bianchi K, Franzin C, Cortivo R, Rossato M, Vettor R, Abatangelo G, Pozzan T, Pinton P, Rizzuto R: High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc Natl Acad Sci U S A 2008, 105:1226-1231.
  • [6]Seale P, Rudnicki MA: A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Dev Biol 2000, 218:115-124.
  • [7]Yokoyama S, Asahara H: The myogenic transcriptional network. Cell Mol Life Sci 2011, 68:1843-1849.
  • [8]Berkes CA, Tapscott SJ: MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 2005, 16:585-595.
  • [9]Gayraud-Morel B, Chrétien F, Flamant P, Gomès D, Zammit PS, Tajbakhsh S: A role for the myogenic determination gene Myf5 in adult regenerative myogenesis. Dev Biol 2007, 312:13-28.
  • [10]Haldar M, Karan G, Tvrdik P, Capecchi MR: Two cell lineages, myf5 and myf5-independent, participate in mouse skeletal myogenesis. Dev Cell 2008, 14:437-445.
  • [11]Mok GF, Sweetman D: Many routes to the same destination: lessons from skeletal muscle development. Reproduction 2011, 141:301-312.
  • [12]Turk R, Sterrenburg E, de Meijer EJ, van Ommen GJ, den Dunnen JT, t Hoen PA: Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling. BMC Genomics 2005, 6:98. BioMed Central Full Text
  • [13]Boonen KJM, Rosaria-Chak KY, Baaijens FPT, van der Schaft DWJ, Post MJ: Essential environmental cues from the satellite cell niche: optimizing proliferation and differentiation. Am J Physiol, Cell Physiol 2009, 296:C1338-1345.
  • [14]Wolf MT, Daly KA, Reing JE, Badylak SF: Biologic scaffold composed of skeletal muscle extracellular matrix. Biomaterials 2012, 33:2916-2925.
  • [15]Janot M, Audfray A, Loriol C, Germot A, Maftah A, Dupuy F: Glycogenome expression dynamics during mouse C2C12 myoblast differentiation suggests a sequential reorganization of membrane glycoconjugates. BMC Genomics 2009, 10:483. BioMed Central Full Text
  • [16]Lock JG, Wehrle-Haller B, Strömblad S: Cell-matrix adhesion complexes: master control machinery of cell migration. Semin Cancer Biol 2008, 18:65-76.
  • [17]Janik ME, Lityńska A, Vereecken P: Cell migration-the role of integrin glycosylation. Biochim Biophysic Acta 1800, 2010:545-555.
  • [18]Schweighoffer T, Shaw S: Adhesion cascades: diversity through combinatorial strategies. Curr Opin Cell Biol 1992, 4:824-829.
  • [19]Yoshikazu T, Xiaojing Y, Scott S: The integrins. Genome Biol 2007, 8:215. BioMed Central Full Text
  • [20]Rosen GD, Sanes JR, LaChance R, Cunningham JM, Roman J, Dean DC: Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis. Cell 1992, 69:1107-1119.
  • [21]Nedachi T, Kadotani A, Ariga M, Katagiri H, Kanzaki M: Ambient glucose levels qualify the potency of insulin myogenic actions by regulating SIRT1 and FoxO3a in C2C12 myocytes. Am J Physiol Endocrinol Metab 2008, 294(4):668-678.
  • [22]Grefte S, Vullinghs S, Kuijpers-Jagtman AM, Torensma R, Von den Hoff JW: Matrigel, but not collagen I, maintains the differentiation capacity of muscle derived cells in vitro. Biomed Mater 2012., 7055004 Epub
  • [23]Friedrich M, Böhlig L, Kirschner RD, Hauschildt S: Identification of two regulatory binding sites which confer myotube specific expression of mono-ADP-ribosyltranferase ART1 gene. BMC Mol Biol 2008, 9:91. BioMed Central Full Text
  • [24]Opavsky R, Haviernik P, Jurkovicova D, Garin MT, Copeland NG, Gilbert DJ, Jenkins NA, Bies J, Garfield S, Pastorekova S, Oue A, Wolff L: Molecular characterization of the mouse Tem1/endosialin gene regulated by cell density in vitro and expressed in normal tissues in vivo. J Biol Chem 2001, 276(42):38795-807.
  • [25]Zhou H, Kartsogiannis V, Hu YS, Elliott J, Quinn JM, McKinstry WJ, Gillespie MT, Ng KW: A novel osteoblast-derived C-type lectin that inhibits osteoclast formation. J Biol Chem 2001, 276:14916-14923.
  • [26]Yoon KJ, Phelps DA, Bush RA, Remack JS, Billups CA, Khoury JD: ICAM-2 expression mediates a membrane-actin link, confers a nonmetastatiic phenotype and reflects favorable tumor stage or histology in neuroblastoma. PLoS ONE 2008, 3:e3629.
  • [27]Mu D, Cambier S, Fjellbirkeland L, Baron JL, Munger JS, Kawakatsu H, Sheppard D, Broaddus VC, Nishimura SL: The integrin αvβ8 mediates epithelial homeostasis through MT1-MMP–dependent activation of TGF-β1. J Cell Biol 2002, 157:493-507.
  • [28]Cambier S, Gline S, Mu D, Collins R, Araya J, Dolganov G, Einheber S, Boudreau N, Nishimura SL: Integrin αvβ8-Mediated Activation of Transforming Growth Factor-β by Perivascular Astrocytes. Am J Pathol 2005, 166:1883-1894.
  • [29]Ma W, Tavakoli T, Derby E, Serebryakova Y, Rao MS, Mattson MP: Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells. BMC Dev Biol 2008, 8:90. BioMed Central Full Text
  • [30]Ryan JC, Naper C, Hayashi S, Daws MR: Physiologic functions of activating natural killer (NK) complex-encoded receptors on NK cells. Immunol Rev 2001, 181:126-137.
  • [31]Rondanino C, Poland PA, Kinlough CL, Li H, Rbaibi Y, Myerburg MM, Al-bataineh MM, Kashlan OB, Pastor-Soler NM, Hallows KR, Weisz OA, Apodaca G, Hughey RP: Galectin-7 modulates the length of the primary cilia and wound repair in polarized kidney epithelial cells. Am J Physiol Renal Physiol 2011, 301:622-633.
  • [32]Yang H, Wang SW, Liu Z, Wu MWH, McAlpine B, Ansel J, Armstrong C, Wu GJ: Isolation and characterization of mouse MUC18 cDNA gene, and correlation of MUC18 expression in mouse melanoma cell lines with metastatic ability. Gene 2001, 265:133-145.
  • [33]Gorfu G, Rivera-Nieves J, Ley K: Role of beta7 integrins in intestinal lymphocyte homing and retention. Curr Mol Med 2009, 9:836-850.
  • [34]Furukawa K, Takamiya K, Furukawa K: β1,4-N-acetylgalactosaminyltransferase GM2/GD2 synthase: a key enzyme control the synthesis of brain-enriched complex gangliosides. Biochim Biophysic Acta 2002, 1573:356-362.
  • [35]Mikami T, Mizumoto S, Kago N, Kitagawa H, Sugahara K: Specifities of three distinct human chondroitin/dermatan N-acetylgalactosamine 4-O-sulfitransferases demonstrated using partially desulfated dermatan sulfate as an acceptor. J Biol Chem 2003, 278:36115-127.
  • [36]Nystedt J, Anderson H, Hivonen T, Impola U, Jaatinen T, Heiskanen A, Blomqvist M, Satomaa T, Natunen J, Juhani S, Lehenkari P, Valmu L, Laine J: Human CMP-N-Acetylneuraminic acid hydroxylase is novel stem cell marker link to stem cell-specific mechanisms. Stem Cells 2010, 28:258-267.
  • [37]Hayashida Y, Akama TO, Beecher N, Lewis P, Young RD, Meek KM, Kerr B, Hughes CE, Caterson B, Tanigami A, Nakayama J, Michiko NF, Tano Y, Nishida K, Quantock AJ: Matrix morphogenesis in cornea is mediated by the modification of keratin sulfate by GlcNac 6-O-sulfotransferase. Proc Natl Acad Sci U S A. 2006, 103:13333-338.
  • [38]Raman J, Guan Y, Perrine CL, Gerken TA, Tabak LA: UDP-N-acetyl-α-D-galactosamine: polypeptide N-acetylgalactsylaminyltransferases: Completion of the family tree. Glycobiology 2012, 22:768-777.
  • [39]Hashimoto M, Tan S, Mori N, Cheng H, Cheng PW: Mucin biosynthesis: molecular cloning and expression of mouse mucus-type core 2 β1,6 N-acetylglucosaminyltransferase. Glycobiology 2007, 17:994-1006.
  • [40]Calve S, Isaac J, Gumucio JP, Mendias CL: Hyaluronic acid, HAS1, and HAS2 are significantly upregulated during muscle hypertrophy. Am J Physiol Cell Physiol 2012, 303:C577-588.
  • [41]Zcharia E, Zilka R, Yaar A, Yacoby-Zeevi O, Zetser A, Metzger S, Sarid R, Naggi A, Casu B, Ilan N, Vlodavsky I, Abramovitch R: Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models. FASEB J 2005, 19:211-221.
  • [42]Takahashi S, Ogasawa H, Takahashi K, Hori K, Saito K, Mori K: Identification of a domain conferring nucleotide binding to N-acetyl_D-glucosamine 2-Epimerase (Renin Binding Protein). J Biochem 2002, 131:605-610.
  • [43]Watanabe R, Inoue N, Westfall B, Taron CH, Orlean P, Takeda J, Kinoshita T: The first step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1. EMBO J 1998, 17:877-885.
  • [44]Morina R, Knorr C, Haase B, Leeb T, Seuberlich T, Zurbriggen A, Brem G, Schutz E, Brenig B: Molecular analysis of carbohydrate N-acetylgalactosamine 4-O-sulfotransferase 8 (CHST8) as a candidate gene for bovine spongiform encephalopathy susceptibility. Anim Genet 2009, 41:85-88.
  • [45]Nakagawa N, Manya H, Toda T, Endo T, Oka S: Human natural killer-1 sulfotransferase (HKN-1ST)-induced sulfate transfer regulates laminine- binding glycans on α-dystroglycan. J Biol Chem 2012, 287:30823-832.
  • [46]Cromphout K, Vleugels W, Heykants L, Schollen E, Keldermans L, Sciot R, D’Hooge R, De Deyn PP, von Figure K, Hartmann D, Korner C, Matthijs G: The normal phenotype of PMM1-deficient mice suggests that PMM1 is not essential for normal mouse development. Mol Cell Biol 2006, 26:5621-635.
  • [47]Arce I, Martinez-Muñoz L, Roda-Navarro P, Fernández-Ruiz E: The human C-type lectin CLECSF8 is novel monocyte/macrophage andocytic receptor. Eur J Immunol 2004, 34:210-220.
  • [48]Siep M, Sleddens-Linkels E, Mulders S, Van Eenennaam H, Wassenaar E, Van Cappellen W, Hoogergrugge J, Grootegoed JA, Baarends WM: Basic helix-loop-helix transcription factor Tcfl5 interacts with the Calmegin gene promoter in mouse spermatogenesis. Nucleic Acids Res 2004, 32:6425-6436.
  • [49]Hummelshøj T, Ma YJ, Munthe-Fog L, Bjarnsholt T, Moser C, Skjoedt MO, Romani L, Fujita T, Endo Y, Garred P: The interaction pattern of murine serum ficolin-A with microorganisms. PLoS ONE 2012, 7:e38196.
  • [50]Mollicone R, Moore SHE, Bovin N, Garcia-Rosasco M, Candelier JJ, Martinez-Duncker I, Oriol R: Activity, splice variants, conserved peptide motifs, and phylogeny of two new α1,3-fucosyltransferase families (FUT10 and FUT11). J Biol Chem 2009, 284:4723-738.
  • [51]Niittymäki J, Mattila P, Renkonen R: Differential gene expression of GDP-L-fucose-synthesizing enzymes, GDP-fucose transporter and fucosyltransferase VII. APMIS 2006, 114:539-548.
  • [52]Cachaço AS, Pereira CS, Pardal RG, Bajanca F, Thorsteinsdóttir S: Integrin repertoire on myogenic cells changes during the course of primary myogenesis in the mouse. Dev Dynam 2005, 232:1069-1078.
  • [53]Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H: Lumican Regulates Collagen Fibril Assembly: Skin Fragility and Corneal Opacity in the Absence of Lumican. J Cell Biol 1998, 141:1277-1286.
  • [54]Koya D, Dennis JW, Warren CE, Takahara N, Schoen FJ, Nishio Y, Nakajima T, Lipes MA, King GL: Overexpression of core 2 N-acetylglycosaminyltransferase enhances cytokine actions and induces hypertrophic myocardium in transgenic mice. FASEB J 1999, 13:2329-2337.
  • [55]Pallafacchina G, François S, Regnault B, Czarny B, Dive V, Cumano A, Montarras D, Buckingham M: An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Res 2010, 4:77-91.
  • [56]Cerletti M, Molloy MJ, Tomczak KK, Yoon S, Ramoni MF, Kho AT, Beggs AH, Gussoni E: Melanoma cell adhesion molecule is a novel marker for human fetal myogenic cells and affects myoblast fusion. J Cell Sci 2006, 119:3117-3127.
  • [57]Alahari SK, Reddig PJ, Juliano RL: The integrin-binding protein Nischarin regulates cell migration by inhibiting PAK. EMBO J 2004, 23:2777-2788.
  • [58]Kollias HD, McDermott JC: Transforming growth factor-beta and myostatin signaling in skeletal muscle. J Appl Physiol 2008, 104(3):579-587.
  • [59]Gouttenoire J, Bougault C, Aubert-Foucher E, Perrier E, Ronzière MC, Sandell L, Lundgren-Akerlund E, Mallein-Gerin F: BMP-2 and TGF-beta1 differentially control expression of type II procollagen and alpha 10 and alpha 11 integrins in mouse chondrocytes. Eur J Cell Biol 2010, 89:307-314.
  • [60]Ito T, Williams JD, Fraser DJ, Phillips AO: Hyaluronan regulates transforming growth factor-beta1 receptor compartmentalization. J Biol Chem 2004, 279:25326-25332.
  • [61]Li X, McFarland DC, Velleman SG: Extracellular matrix proteoglycan decorin-mediated myogenic satellite cell responsiveness to transforming growth factor-beta1 during cell proliferation and differentiation Decorin and transforming growth factor-beta1 in satellite cells. Domest Anim Endocrinol 2008, 35:263-273.
  • [62]Golbert DC, Correa-de-Santana E, Ribeiro-Alves M, de Vasconcelos AT, Savino W: ITGA6 gene silencing by RNA interference modulates the expression of a large number of cell migration-related genes in human thymic epithelial cells. BMC Genomics 2013, 14(6):S3.
  • [63]Leschziner A, Moukhles H, Lindenbaum M, Gee SH, Butterworth J, Campbell KP, Carbonetto S: Neural Regulation of α-Dystroglycan Biosynthesis and Glycosylation in Skeletal Muscle. J Neurochem 2000, 74:70-80.
  • [64]Endo T: O-Mannosyl glycans in mammals. Biochim Biophysic Acta 1999, 1473:237-246.
  • [65]Stalnaker SH, Stuart R, Wells L: Mammalian O-mannosylation: unsolved questions of structure/function. Curr Opin Struct Biol 2011, 21(5):603-609.
  • [66]Talior-Volodarsky I, Connelly KA, Arora PD, Gullberg D, McCulloch CA: α11 integrin stimulates myofibroblast differentiation in diabetic cardiomyopathy. Cardiovasc Res 2012, 96(2):265-75.
  • [67]Byström B, Carracedo S, Behndig A, Gullberg D, Pedrosa-Domellöf F: α11 integrin in the human cornea: importance in development and disease. Invest Ophthalmol Vis Sci 2009, 50(11):5044-53.
  • [68]Rodriguez J, Vernus B, Toubiana M, Jublanc E, Tintignac L, Leibovitch S, Bonnieu A: Myostatin Inactivation Increases Myotube Size Through Regulation of Translational Initiation Machinery. J Cell Biochem 2011, 112:3531-3542.
  • [69]Salehzada T, Cambier L, Thi NV, Manchon L, Regnier L, Bisbal C: Endoribonuclease L (RNase L) Regulates the Myogenic and Adipogenic Potential of Myogenic Cells. PLoS ONE 2009, 10:e7563.
  • [70]Lucau-Danila A, Lelandais G, Kozovska Z, Tanty V, Delaveau T, Devaux F, Jacq C: Early expression of yeast genes affected by chemical stress. Mol Cell Biol 2005, 25:1860-1868.
  • [71]Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J: TM4 microarray software suite. Methods Enzymol 2006, 411:134-93.
  文献评价指标  
  下载次数:45次 浏览次数:24次