期刊论文详细信息
BMC Genomics
Copy number variations in high and low fertility breeding boars
W Allan King1  Brian Sullivan2  Laurence Maignel2  Anh T Quach1  Tamas Revay1 
[1] University of Guelph, Ontario Veterinary College, Department of Biomedical Sciences, 50 Stone Rd E, Guelph N1G 2W1, ON, Canada;Canadian Centre for Swine Improvement Inc. (CCSI), Central Experimental Farm, Building #75, 960 Carling Avenue, Ottawa K1A 0C6, ON, Canada
关键词: Markers of fertility;    SNP50K;    CNV;    Copy number variation;    Hyperprolific;    Hypoprolific;    High fertility;    Low fertility;    Boar;    Pig;   
Others  :  1173999
DOI  :  10.1186/s12864-015-1473-9
 received in 2014-09-05, accepted in 2015-03-20,  发布年份 2015
PDF
【 摘 要 】

Background

In this study we applied the extreme groups/selective genotyping approach for identifying copy number variations in high and low fertility breeding boars. The fertility indicator was the calculated Direct Boar Effect on litter size (DBE) that was obtained as a by-product of the national genetic evaluation for litter size (BLUP). The two groups of animals had DBE values at the upper (high fertility) and lower (low fertility) end of the distribution from a population of more than 38,000 boars. Animals from these two diverse phenotypes were genotyped with the Porcine SNP60K chip and compared by several approaches in order to prove the feasibility of our CNV analysis and to identify putative markers of fertility.

Results

We have identified 35 CNVRs covering 36.5 Mb or ~1.3% of the porcine genome. Among these 35 CNVRs, 14 were specific to the high fertility group, while 19 CNVRs were specific to the low fertility group which overlap with 137 QTLs of various reproductive traits. The identified 35 CNVRs encompassed 50 genes, among them 40 were specific to the low fertility group, seven to the high fertility group, while three were found in regions that were present in both groups but with opposite gain/loss status. A functional analysis of several databases revealed that the genes found in CNVRs from the low fertility group have been significantly enriched in members of the innate immune system, Toll-like receptor and RIG-I-like receptor signaling and fatty acid oxidation pathways.

Conclusions

We have demonstrated that our analysis pipeline could identify putative CNV markers of fertility, especially in case of low fertility boars.

【 授权许可】

   
2015 Revay et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150423030305647.pdf 1123KB PDF download
Figure 4. 16KB Image download
Figure 3. 79KB Image download
Figure 2. 22KB Image download
Figure 1. 61KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]USDA, Foreign Agricultural Service: Livestock and Poultry: World Markets and Trade. 2014 April p.11-18. http://www.fas.usda.gov/data/livestock-and-poultry-world-markets-and-trade. Accessed 04 Sept 2014.
  • [2]Hernandez SC, Finlayson HA, Ashworth CJ, Haley CS, Archibald AL: A genome-wide linkage analysis for reproductive traits in F2 Large White × Meishan cross gilts. Anim Genet 2014, 45:191-7.
  • [3]Ducos A, Revay T, Kovacs A, Hidas A, Pinton A, Bonnet-Garnier A, et al.: Cytogenetic screening of livestock populations in Europe: an overview. Cytogenet Genome Res 2008, 120:26-41.
  • [4]Bickhart DM, Liu GE: The challenges and importance of structural variation detection in livestock. Front Genet 2014, 5:37.
  • [5]Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al.: Detection of large-scale variation in the human genome. Nat Genet 2004, 36:949-51.
  • [6]Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al.: Large-scale copy number polymorphism in the human genome. Science (80- ) 2004, 305:525-8.
  • [7]Haraksingh RR, Snyder MP: Impacts of variation in the human genome on gene regulation. J Mol Biol 2013, 425:3970-7.
  • [8]MacDonald JR, Ziman R, Yuen RKC, Feuk L, Scherer SW: The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res 2014, 42(Database issue):D986-92.
  • [9]Almal SH, Padh H: Implications of gene copy-number variation in health and diseases. J Hum Genet 2012, 57:6-13.
  • [10]Boone PM, Campbell IM, Baggett BC, Soens ZT, Rao MM, Hixson PM, et al.: Deletions of recessive disease genes: CNV contribution to carrier states and disease-causing alleles. Genome Res 2013, 23:1383-94.
  • [11]Clop A, Vidal O, Amills M: Copy number variation in the genomes of domestic animals. Anim Genet 2012, 43:503-17.
  • [12]Gurgul A, Semik E, Pawlina K, Szmatoła T, Jasielczuk I, Bugno-Poniewierska M: The application of genome-wide SNP genotyping methods in studies on livestock genomes. J Appl Genet 2014, 55:197-208.
  • [13]Fadista J, Nygaard M, Holm L, Thomsen B, Bendixen C: A snapshot of CNVs in the pig genome. PLoS One 2008, 3:e3916.
  • [14]Li Y, Mei S, Zhang X, Peng X, Liu G, Tao H, et al.: Identification of genome-wide copy number variations among diverse pig breeds by array CGH. BMC Genomics 2012, 13:725. BioMed Central Full Text
  • [15]Wang J, Jiang J, Wang H, Kang H, Zhang Q, Liu J-F: Enhancing genome-wide copy number variation identification by high density array CGH using diverse resources of pig breeds. PLoS One 2014, 9:e87571.
  • [16]Rubin C-J, Megens H-J, Martinez Barrio A, Maqbool K, Sayyab S, Schwochow D, et al.: Strong signatures of selection in the domestic pig genome. Proc Natl Acad Sci U S A 2012, 109:19529-36.
  • [17]Paudel Y, Madsen O, Megens H-J, Frantz LAF, Bosse M, Bastiaansen JWM, et al.: Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication. BMC Genomics 2013, 14:449. BioMed Central Full Text
  • [18]Ramos AM, Crooijmans RPMA, Affara NA, Amaral AJ, Archibald AL, Beever JE, Bendixen C, Churcher C, Clark R, Dehais P, Hansen MS, Hedegaard J, Hu ZL, Kerstens HH, Law AS, Megens HJ, Milan D, Nonneman DJ, Rohrer GA, Rothschild MF, Smith TPL, Schnabel RD, Van Tassell CP, Taylor JF, Wiedmann RT, Schook LB, Groenen MAM: Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One 2009, 4:e6524.
  • [19]Ramayo-Caldas Y, Castelló A, Pena RN, Alves E, Mercadé A, Souza CA, et al.: Copy number variation in the porcine genome inferred from a 60 k SNP BeadChip. BMC Genomics 2010, 11:593. BioMed Central Full Text
  • [20]Chen C, Qiao R, Wei R, Guo Y, Ai H, Ma J, et al.: A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits. BMC Genomics 2012, 13:733. BioMed Central Full Text
  • [21]Wang L, Liu X, Zhang L, Yan H, Luo W, Liang J, Cheng D, Chen S, Ma X, Song X, Zhao K, Wang L: Genome-wide copy number variations inferred from SNP genotyping arrays using a large white and Minzhu intercross population. PLoS One 2013, 8:e74879.
  • [22]Fernández AI, Barragán C, Fernández A, Rodríguez MC, Villanueva B: Copy number variants in a highly inbred Iberian porcine strain. Anim Genet 2014, 45:357-66.
  • [23]Fowler KE, Pong-Wong R, Bauer J, Clemente EJ, Reitter CP, Affara NA, et al.: Genome wide analysis reveals single nucleotide polymorphisms associated with fatness and putative novel copy number variants in three pig breeds. BMC Genomics 2013, 14:784. BioMed Central Full Text
  • [24]Diskin SJ, Li M, Hou C, Yang S, Glessner J, Hakonarson H, Bucan M, Maris JM, Wang K: Adjustment of genomic waves in signal intensities from whole-genome SNP genotyping platforms. Nucleic Acids Res 2008, 36:e126.
  • [25]Published articles using SVS. [www.goldenhelix.com/SNP_Variation/published_articles.html]
  • [26]Rohrer GA, Wise TH, Lunstra DD, Ford JJ: Identification of genomic regions controlling plasma FSH concentrations in Meishan-White Composite boars. Physiol Genomics 2001, 6:145-51.
  • [27]Chen CY, Guo YM, Zhang ZY, Ren J, Huang LS: A whole genome scan to detect quantitative trait loci for gestation length and sow maternal ability related traits in a White Duroc × Erhualian F2 resource population. Animal 2010, 4:861-6.
  • [28]Wilkie PJ, Paszek AA, Beattie CW, Alexander LJ, Wheeler MB, Schook LB: A genomic scan of porcine reproductive traits reveals possible quantitative trait loci (QTLs) for number of corpora lutea. Mamm Genome 1999, 10:573-8.
  • [29]Ren DR, Ren J, Xing YY, Guo YM, Wu YB, Yang GC, et al.: A genome scan for quantitative trait loci affecting male reproductive traits in a White Duroc x Chinese Erhualian resource population. J Anim Sci 2009, 87:17-23.
  • [30]Rohrer GA, Ford JJ, Wise TH, Vallet JL, Christenson RK: Identification of quantitative trait loci affecting female reproductive traits in a multigeneration Meishan-White composite swine population. J Anim Sci 1999, 77:1385-91.
  • [31]Darvasi A, Soller M: Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor Appl Genet 1992, 85:353-9.
  • [32]Lee H, Ho H, Kao C: A new simple method for improving QTL mapping under selective genotyping. Genetics 2014, 198(December):1685-98.
  • [33]Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SFA, et al.: PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 2007, 17:1665-74.
  • [34]Colella S, Yau C, Taylor JM, Mirza G, Butler H, Clouston P, et al.: QuantiSNP: an objective bayes hidden-markov model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res 2007, 35:2013-25.
  • [35]Pique-Regi R, Cáceres A, González JR: R-Gada: a fast and flexible pipeline for copy number analysis in association studies. BMC Bioinformatics 2010, 11:380. BioMed Central Full Text
  • [36]Xu L, Hou Y, Bickhart D, Song J, Liu G: Comparative analysis of CNV calling algorithms: literature survey and a case study using bovine high-density SNP data. Microarrays 2013, 2:171-85.
  • [37]Breheny P, Chalise P, Batzler A, Wang L, Fridley BL: Genetic association studies of copy-number variation: should assignment of copy number states precede testing? PLoS One 2012, 7:e34262.
  • [38]Ernst CW, Steibel JP: Molecular advances in QTL discovery and application in pig breeding. Trends Genet 2013, 29:215-24.
  • [39]Hu Z-L, Park CA, Wu X-L, Reecy JM: Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Res 2013, 41(Database issue):D871-9.
  • [40]Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, et al.: Analyses of pig genomes provide insight into porcine demography and evolution. Nature 2012, 491:393-8.
  • [41]Saeidi S, Shapouri F, Amirchaghmaghi E, Hoseinifar H, Sabbaghian M, Sadighi Gilani MA, et al.: Sperm protection in the male reproductive tract by Toll-like receptors. Andrologia 2013, 10:1-7.
  • [42]Meylan E, Tschopp J, Karin M: Intracellular pattern recognition receptors in the host response. Nature 2006, 442:39-44.
  • [43]Bermejo-Alvarez P, Rizos D, Rath D, Lonergan P, Gutierrez-Adan A: Epigenetic differences between male and female bovine blastocysts produced in vitro. Physiol Genomics 2008, 32:264-72.
  • [44]Bhushan S, Schuppe H-C, Fijak M, Meinhardt A: Testicular infection: microorganisms, clinical implications and host-pathogen interaction. J Reprod Immunol 2009, 83:164-7.
  • [45]Kannaki TR, Shanmugam M, Verma PC: Toll-like receptors and their role in animal reproduction. Anim Reprod Sci 2011, 125:1-12.
  • [46]Amaral A, Castillo J, Estanyol JM, Ballescà JL, Ramalho-Santos J, Oliva R: Human sperm tail proteome suggests new endogenous metabolic pathways. Mol Cell Proteomics 2013, 12:330-42.
  • [47]McKeegan PJ, Sturmey RG: The role of fatty acids in oocyte and early embryo development. Reprod Fertil Dev 2012, 24:59-67.
  • [48]Wathes DC, Abayasekara DRE, Aitken RJ: Polyunsaturated fatty acids in male and female reproduction. Biol Reprod 2007, 77:190-201.
  • [49]Tremellen K: Oxidative stress and male infertility–a clinical perspective. Hum Reprod Update 2008, 14:243-58.
  • [50]Kienesberger PC, Oberer M, Lass A, Zechner R: Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. J Lipid Res 2009, 50(Suppl):S63-8.
  • [51]Lee K, Kerner J, Hoppel CL: Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex. J Biol Chem 2011, 286:25655-62.
  • [52]Janssen U, Davis EM, Le Beau MM, Stoffel W: Human mitochondrial enoyl-CoA hydratase gene (ECHS1): structural organization and assignment to chromosome 10q26.2-q26.3. Genomics 1997, 40:470-5.
  • [53]Marcinkowska M, Szymanski M, Krzyzosiak WJ, Kozlowski P: Copy number variation of microRNA genes in the human genome. BMC Genomics 2011, 12:183. BioMed Central Full Text
  • [54]Wu X, Zhang D, Li G: Insights into the regulation of human CNV-miRNAs from the view of their target genes. BMC Genomics 2012, 13:707. BioMed Central Full Text
  • [55]Donadeu FX, Schauer SN, Sontakke SD: Involvement of miRNAs in ovarian follicular and luteal development. J Endocrinol 2012, 215:323-34.
  • [56]Huang J, Ju Z, Li Q, Hou Q, Wang C, Li J, et al.: Solexa sequencing of novel and differentially expressed microRNAs in testicular and ovarian tissues in Holstein cattle. Int J Biol Sci 2011, 7:1016-26.
  • [57]Kotaja N, Bhattacharyya SN, Jaskiewicz L, Kimmins S, Parvinen M, Filipowicz W, et al.: The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci U S A 2006, 103:2647-52.
  • [58]Niu Z, Goodyear SM, Rao S, Wu X, Tobias JW, Avarbock MR, et al.: MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 2011, 108:12740-5.
  • [59]McBride D, Carre W, Sontakke SD, Hogg CO, Law A, Donadeu FX, Clinton M: Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction 2012, 144:221-233.
  • [60]Ohlsson Teague EMC, Print CG, Hull ML: The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update 2010, 16:142-65.
  • [61]Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, et al.: miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009, 460:705-10.
  • [62]Wang T, Li M, Guan J, Li P, Wang H, Guo Y, et al.: MicroRNAs miR-27a and miR-143 regulate porcine adipocyte lipid metabolism. Int J Mol Sci 2011, 12:7950-9.
  • [63]Takada S, Berezikov E, Choi YL, Yamashita Y, Mano H: Potential role of miR-29b in modulation of Dnmt3a and Dnmt3b expression in primordial germ cells of female mouse embryos. RNA 2009, 15:1507-14.
  • [64]Li Y, Wang H-Y, Wan F-C, Liu F-J, Liu J, Zhang N, et al.: Deep sequencing analysis of small non-coding RNAs reveals the diversity of microRNAs and piRNAs in the human epididymis. Gene 2012, 497:330-5.
  • [65]Abu-Halima M, Backes C, Leidinger P, Keller A, Lubbad AM, Hammadeh M, et al.: MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns. Fertil Steril 2014, 101:78-86.e2.
  • [66]Yang X, Zhou Y, Peng S, Wu L, Lin H-Y, Wang S, et al.: Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Reproduction 2012, 144:235-44.
  • [67]Strange RC, Spiteri MA, Ramachandran S, Fryer AA: Glutathione-S-transferase family of enzymes. Mutat Res 2001, 482:21-6.
  • [68]Wu W, Lu J, Tang Q, Zhang S, Yuan B, Li J, et al.: GSTM1 and GSTT1 null polymorphisms and male infertility risk: an updated meta-analysis encompassing 6934 subjects. Sci Rep 2013, 3:2258.
  • [69]Canadain Centre for Swine Improvement Inc. [www.ccsi.ca]
  • [70]Tribout T, Ducos A, Maignel L, Bidanel J: La detection de verrats porteurs d’anomalies chromosomiques Utilisation du systeme d'information BLUP. TECHNIPORC 2000, 23:19-24.
  • [71]Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, Garcia F, et al.: High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res 2006, 16:1136-48.
  • [72]Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM: Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 2009, 37:e45.
  • [73]Pfaffl MW: A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 2001, 29:e45.
  • [74]Karolchik D, Barber GP, Casper J, Clawson H, Cline MS, Diekhans M, Dreszer TR, Fujita PA, Guruvadoo L, Haeussler M, Harte RA, Heitner S, Hinrichs AS, Learned K, Lee BT, Li CH, Raney BJ, Rhead B, Rosenbloom KR, Sloan CA, Speir ML, Zweig AS, Haussler D, Kuhn RM, Kent WJ: The UCSC Genome Browser database: 2014 update. Nucleic Acids Res 2014, 42:D764-D770.
  • [75]Wang J, Duncan D, Shi Z, Zhang B: WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res 2013, 41(Web Server issue):W77-83.
  • [76]Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30:207-10.
  文献评价指标  
  下载次数:19次 浏览次数:17次