期刊论文详细信息
BMC Evolutionary Biology
High genetic diversity at the regional scale and possible speciation in Sebacina epigaea and S. incrustans
Sigisfredo Garnica1  Robert Bauer1  Franz Oberwinkler1  Kai Riess1 
[1] Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany
关键词: Ectomycorrhiza;    Synonymous polymorphism;    Sympatry;    Sebacinales;    Basidiomycota;    Multilocus genealogies;    Population structure;    Diversity;    Speciation;    Cryptic species;   
Others  :  1087334
DOI  :  10.1186/1471-2148-13-102
 received in 2013-01-21, accepted in 2013-05-02,  发布年份 2013
PDF
【 摘 要 】

Background

Phylogenetic studies, particularly those based on rDNA sequences from plant roots and basidiomata, have revealed a strikingly high genetic diversity in the Sebacinales. However, the factors determining this genetic diversity at higher and lower taxonomic levels within this order are still unknown. In this study, we analysed patterns of genetic variation within two morphological species, Sebacina epigaea and S. incrustans, based on 340 DNA haplotype sequences of independent genetic markers from the nuclear (ITS + 5.8S + D1/D2, RPB2) and mitochondrial (ATP6) genomes for 98 population samples. By characterising the genetic population structure within these species, we provide insights into species boundaries and the possible factors responsible for genetic diversity at a regional geographic scale.

Results

We found that recombination events are relatively common between natural populations within Sebacina epigaea and S. incrustans, and play a significant role in generating intraspecific genetic diversity. Furthermore, we also found that RPB2 and ATP6 genes display higher levels of intraspecific synonymous polymorphism. Phylogenetic and demographic analyses based on nuclear and mitochondrial loci revealed three distinct phylogenetic lineages within of each of the morphospecies S. epigaea and S. incrustans: one major and widely distributed lineage, and two geographically restricted lineages, respectively. We found almost no differential morphological or ecological characteristics that could be used to discriminate between these lineages.

Conclusions

Our results suggest that recombination and negative selection have played significant roles in generating genetic diversity within these morphological species at small geographical scales. Concordance between gene genealogies identified lineages/cryptic species that have evolved independently for a relatively long period of time. These putative species were not associated with geographic provenance, geographic barrier, host preference or distinct phenotypic innovations.

【 授权许可】

   
2013 Riess et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116025154856.pdf 3194KB PDF download
Figure 9. 152KB Image download
Figure 8. 132KB Image download
Figure 7. 128KB Image download
Figure 6. 152KB Image download
Figure 5. 50KB Image download
Figure 4. 60KB Image download
Figure 3. 65KB Image download
Figure 6. 143KB Image download
Figure 9. 123KB Image download
【 图 表 】

Figure 9.

Figure 6.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Koufopanou V, Burt A, Taylor JW: Concordance of gene genealogies reveals reproductive isolation in the pathogenic fungus Coccidioides immitis. Proc Natl Acad Sci USA 1997, 94:5478-5482.
  • [2]O’Donnell K, Kistler HC, Tacke BK, Casper HH: Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Natl Acad Sci USA 2000, 97:7905-7910.
  • [3]Dettman JR, Jacobson DJ, Taylor JW: A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution 2003, 57:2703-2720.
  • [4]Pringle A, Baker DM, Platt JL, Wares JP, Latge JP, Taylor JW: Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 2005, 59:1886-1899.
  • [5]Kauserud H, Stensrud Ø, Decock C, Shalchian-Tabrizi K, Schumacher T: Multiple gene genealogies and AFLPs suggest cryptic speciation and long-distance dispersal in the basidiomycete Serpula himantioides (Boletales). Mol Ecol 2006, 15:421-431.
  • [6]Kauserud H, Svegarden IB, Decock C, Hallenberg N: Hybridization among cryptic species of the cellar fungus Coniophora puteana (Basidiomycota). Mol Ecol 2007, 16:389-399.
  • [7]Geml J, Laursen GA, O’Neill K, Nusbaum HC, Taylor DL: Beringian origins and cryptic speciation events in the fly agaric (Amanita muscaria). Mol Ecol 2006, 15:225-239.
  • [8]Garnica S, Spahn P, Oertel B, Ammirati J, Oberwinkler F: Tracking the evolutionary history of Cortinarius species in section Calochroi, with transoceanic disjunct distributions. BMC Evol Biol 2011, 11:213.
  • [9]Le Gac M, Hood ME, Fournier E, Giraud T: Phylogenetic evidence of host-specific cryptic species in the anther smut fungus. Evolution 2007, 61:15-26.
  • [10]Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC: Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 2000, 31:21-32.
  • [11]Weiß M, Sýkorová Z, Garnica S, Riess K, Martos F, Krause C, Oberwinkler F, Bauer R, Redecker D: Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS One 2011, 6:e16793.
  • [12]Bourdot H, Galzin A: Sebacina. In Contribution a la Flore Mycologique de la France. I. Hyménomycètes de France. Hetérobasidiés, Homobasidiés, Gymnocarpes. Edited by Bourdot H, Galzin A. Sceaux: Société Mycologique de France; 1927:39-40.
  • [13]Tulasne LR: Les Fungi Tremellini et leurs alliés. 1. Sebacina incrustans Tul. In Annales des Sciences Naturelles, (Botanique), série 5. Edited by Brongniart AD, Decaisne J. Paris: Librairie de G. Masson; 1872:225-226.
  • [14]Urban A, Weiß M, Bauer R: Ectomycorrhizas involving sebacinoid mycobionts. Mycol Res 2003, 107:3-14.
  • [15]Selosse M-A, Weiß M, Jany J-L, Tillier A: Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) L.C.M. Rich. and neighbouring tree ectomycorrhizae. Mol Ecol 2002, 11:1831-1844.
  • [16]Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H: Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinform Online 2008, 4:193-201.
  • [17]Vandenkoornhuyse P, Leyval C, Bonnin I: High genetic diversity in arbuscular mycorrhizal fungi: evidence for recombination events. Heredity 2001, 87:243-253.
  • [18]Chamary JV, Parmley JL, Hurst LD: Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat Rev Genet 2006, 7:98-108.
  • [19]Cairney JWG: Intraspecific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 1999, 9:125-135.
  • [20]Gryta H, Carriconde F, Charcosset J-Y, Jargeat P, Gardes M: Population dynamics of the ectomycorrhizal fungal species Tricholoma populinum and Tricholoma scalpturatum associated with black poplar under differing environmental conditions. Envirol Microbiol 2006, 8:773-786.
  • [21]den Bakker HC, Zuccarello GC, Kuyper THW, Noordeloos ME: Evolution and host specificity in the ectomycorrhizal genus Leccinum. New Phytol 2004, 163:201-215.
  • [22]Sung GH, Sung J-M, Hywel-Jonec NL, Spatafora JW: A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Mol Phylogenet Evol 2007, 44:1204-1223.
  • [23]Seehausen O: Hybridization and adaptive radiation. Trends Ecol Evol 2004, 19:198-207.
  • [24]Petit RJ, Excoffier L: Gene flow and species delimitation. Trends Ecol Evol 2009, 24:386-393.
  • [25]Matheny PB: Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). Mol Phylogenet Evol 2005, 35:1-20.
  • [26]Kretzer AM, Bruns TD: Use of atp6 in fungal phylogenetics: an example from the Boletales. Mol Phylogenet Evol 1999, 13:483-492.
  • [27]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [28]Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2005, 33:511-518.
  • [29]Lee C, Grasso C, Sharlow MF: Multiple sequence alignment using partial order graphs. Bioinformatics 2002, 18:452-464.
  • [30]Abarenkov K, Nilsson RH, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Ursing BM, Vrålstad T, Liimatainen K, Peintner U, Kõljalg U: The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytol 2010, 186:281-285.
  • [31]Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25:1972-1973.
  • [32]Rambaut A: Se-Al Sequence Alignment Editor. Version 2.0a11 Carbon. http://tree.bio.ed.ac.uk/software/seal webcite
  • [33]Stephens M, Smith NJ, Donnelly P: A new statistical method for haplotype reconstruction from population data. Am J Hum Gen 2001, 68:978-989.
  • [34]Stephens M, Donelly P: A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Gen 2003, 73:1162-1169.
  • [35]Librado P, Rozas J: DnaSP v5: a software for comprensive analysis of DNA polymorphism data. Bioinformatics 2009, 25:1451-1452.
  • [36]Price EW, Carbone I: SNAP: workbench management tool for evolutionary population genetic analysis. Bioinformatics 2005, 21:402-404.
  • [37]Aylor DL, Price EW, Carbone I: SNAP: Combine and Map modules for multilocus population genetic analysis. Bioinformatics 2006, 22:1399-1401.
  • [38]Hudson RR, Kaplan NL: Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 1985, 111:147-164.
  • [39]Myers SR, Griffiths RC: Bounds on the minimum number of recombination events in a sample history. Genetics 2003, 163:375-394.
  • [40]Hudson RR: Gene genealogies and the coalescent process. In Oxford surveys in evolutionary biology. Edited by Futuyuma D, Antonovics J. New York: Oxford University Press; 1990:1-44.
  • [41]Korber B: HIV signature and sequence variation analysis. In Computational analysis of HIV molecular sequences. Edited by Rodrigo AG, Learn GH. Dordrecht: Kluwer Academic Publishers; 2000:55-72.
  • [42]Stamatakis A: RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
  • [43]Stamatakis A, Hoover P, Rougemont J: A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 2008, 57:758-771.
  • [44]Rambaut A: FigTree Drawing Tool. Version 1.3.1. http://tree.bio.ed.ac.uk/software/figtree webcite
  • [45]Farris JS, Källersjö M, Kluge AG, Bult C: Testing significance of incongruence. Cladistics 1994, 10:315-319.
  • [46]Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. Sunderland: Sinauer Associates; 2002.
  • [47]Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123:585-595.
  • [48]Fu YX, Li WH: Statistical tests of neutrality of mutations. Genetics 1993, 133:693-709.
  • [49]Excoffier L, Laval G, Schneider S: Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform Online 2005, 1:47-50.
  • [50]Bandelt H-J, Forster P, Röhl A: Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999, 16:37-48.
  • [51]Polzin T, Daneshmand SV: On steiner trees and minimum spanning trees in hypergraphs. Oper Res Lett 2003, 31:12-20.
  • [52]Hart MW, Sunday J: Things fall apart: biological species form unconnected parsimony networks. Biol Lett 2007, 3:509-512.
  • [53]Clement M, Posada D, Crandall KA: TCS: a computer program to estimate gene genealogies. Mol Ecol 2000, 9:1657-1659.
  • [54]Excoffier L, Smouse PE, Quattro JM: Analysis of Molecular Variance Inferred From Metric Distances Among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Genetics 1992, 131:479-491.
  • [55]Weir BS, Cockerham CC: Estimating F-statistics for the analysis of population structure. Evolution 1984, 38:1358-1370.
  • [56]Weir BS: Genetic Data Analysis II: Methods for Discrete Population Genetic Data. Sunderland: Sinauer Associates; 1996.
  • [57]Raymond M, Rousset F: An exact test for population differentiation. Evolution 1995, 49:1280-1283.
  • [58]Bonnet E, Van de Peer Y: zt: a software tool for simple and partial Mantel tests. J Stat Softw 2002, 7:1-12.
  • [59]Maddison WP, Maddison DR: Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org webcite
  • [60]Gardes M, Bruns TD: ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 1993, 2:113-118.
  • [61]O’Donnell K: Fusarium and its near relatives. In The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. Edited by Reynolds DR, Taylor JW. Wallingford: CAB International; 1993:225-233.
  • [62]White TJ, Bruns T, Lee S, Taylor JW: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications. Edited by Innis MA, Gelfand DH, Sninsky JJ, White TJ. New York: Academic Press; 1990:315-322.
  • [63]Vilgalys R, Hester M: Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 1990, 172:4238-4246.
  • [64]Liu YJ, Whelen S, Hall BD: Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Evol Biol 1999, 16:1799-1808.
  文献评价指标  
  下载次数:42次 浏览次数:13次