期刊论文详细信息
BMC Evolutionary Biology
Ancient gene transfer from algae to animals: Mechanisms and evolutionary significance
Jinling Huang1  Jianfan Wen3  Yong Zou2  Guiling Sun1  Jipei Yue1  Ting Ni2 
[1] Department of Biology, East Carolina University, Greenville, NC, 27858, USA;Graduate School of the Chinese Academy of Sciences, Beijing, 100039, China;State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
关键词: Animal evolution;    Plastids;    Endosymbiosis;    Gene transfer;   
Others  :  1141099
DOI  :  10.1186/1471-2148-12-83
 received in 2012-03-21, accepted in 2012-06-01,  发布年份 2012
PDF
【 摘 要 】

Background

Horizontal gene transfer (HGT) is traditionally considered to be rare in multicellular eukaryotes such as animals. Recently, many genes of miscellaneous algal origins were discovered in choanoflagellates. Considering that choanoflagellates are the existing closest relatives of animals, we speculated that ancient HGT might have occurred in the unicellular ancestor of animals and affected the long-term evolution of animals.

Results

Through genome screening, phylogenetic and domain analyses, we identified 14 gene families, including 92 genes, in the tunicate Ciona intestinalis that are likely derived from miscellaneous photosynthetic eukaryotes. Almost all of these gene families are distributed in diverse animals, suggesting that they were mostly acquired by the common ancestor of animals. Their miscellaneous origins also suggest that these genes are not derived from a particular algal endosymbiont. In addition, most genes identified in our analyses are functionally related to molecule transport, cellular regulation and methylation signaling, suggesting that the acquisition of these genes might have facilitated the intercellular communication in the ancestral animal.

Conclusions

Our findings provide additional evidence that algal genes in aplastidic eukaryotes are not exclusively derived from historical plastids and thus important for interpreting the evolution of eukaryotic photosynthesis. Most importantly, our data represent the first evidence that more anciently acquired genes might exist in animals and that ancient HGT events have played an important role in animal evolution.

【 授权许可】

   
2012 Ni et al.;licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325221433348.pdf 2169KB PDF download
Figure 3. 84KB Image download
Figure 2. 107KB Image download
Figure 1. 103KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Keeling PJ, Palmer JD: Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 2008, 9(8):605-618.
  • [2]Gogarten JP, Doolittle WF, Lawrence JG: Prokaryotic evolution in light of gene transfer. Mol Biol Evol 2002, 19(12):2226-2238.
  • [3]Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D: Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 2002, 99(19):12246-12251.
  • [4]Andersson JO: Lateral gene transfer in eukaryotes. Cell Mol Life Sci 2005, 62(11):1182-1197.
  • [5]Kurland CG, Canback B, Berg OG: Horizontal gene transfer: A critical view. Proc Natl Acad Sci U S A 2003, 100(17):9658-9662.
  • [6]Huang JL, Gogarten JP: Ancient horizontal gene transfer can benefit phylogenetic reconstruction. Trends in Genet 2006, 22(7):361-366.
  • [7]Huang JL, Gogarten JP: Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol 2007, 8(6):R99.
  • [8]Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D: Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms. Science 2009, 324(5935):1724-1726.
  • [9]Delwiche CF: Tracing the thread of plastid diversity through the tapestry of life. Am Nat 1999, 154:S164-S177.
  • [10]Keeling PJ: Diversity and evolutionary history of plastids and their hosts. Am J Bot 2004, 91(10):1481-1493.
  • [11]Bhattacharya D, Yoon HS, Hackett JD: Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 2004, 26(1):50-60.
  • [12]Lane CE, Archibald JM: The eukaryotic tree of life: endosymbiosis takes its TOL. Trends in Ecol & Evol 2008, 23(5):268-275.
  • [13]Maruyama S, Misawa K, Iseki M, Watanabe M, Nozaki H: Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes. BMC Evol Biol 2008, 8:151.
  • [14]Reyes-Prieto A, Moustafa A, Bhattacharya D: Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic. Curr Biol 2008, 18(13):956-962.
  • [15]Maruyama S, Matsuzaki M, Misawa K, Nozaki H: Cyanobacterial contribution to the genomes of the plastid-lacking protists. BMC Evol Biol 2009, 9:197.
  • [16]Cavalier-Smith T: Principles of protein and lipid targeting in secondary symbiogenesis: Euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 1999, 46(4):347-366.
  • [17]Nozaki H, Matsuzaki M, Takahara M, Misumi O, Kuroiwa H, Hasegawa M, Shin-i T, Kohara Y, Ogasawara N, Kuroiwa T: The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. J Mol Evol 2003, 56(4):485-497.
  • [18]Nozaki H: A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended. J Plant Res 2005, 118(4):247-255.
  • [19]Nedelcu AM, Miles IH, Fagir AM, Karol K: Adaptive eukaryote-to-eukaryote lateral gene transfer: stress-related genes of algal origin in the closest unicellular relatives of animals. J Evol Biol 2008, 21(6):1852-1860.
  • [20]Nedelcu AM, Blakney AJC, Logue KD: Functional replacement of a primary metabolic pathway via multiple independent eukaryote-to-eukaryote gene transfers and selective retention. J Evol Biol 2009, 22(9):1882-1894.
  • [21]Sun GL, Yang ZF, Ishwar A, Huang JL: Algal Genes in the Closest Relatives of Animals. Mol Biol Evol 2010, 27(12):2879-2889.
  • [22]Lang BF, O'Kelly C, Nerad T, Gray MW, Burger G: The closest unicellular relatives of animals. Curr Biol 2002, 12(20):1773-1778.
  • [23]Tian J, Sun GL, Ding Q, Huang JL, Oruganti S, Xie B: AlienG: an effective computational tool for phylogenetic identification of horizontally transferred genes. New Orleans, Lousiana: The third International Conference on Bioinformatics and Computational Biology (BICoB); 2011.
  • [24]Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, et al.: The Pfam protein families database. Nucleic Acids Res 2010, 38:D211-D222.
  • [25]Ochman H, Lawrence JG, Groisman EA: Lateral gene transfer and the nature of bacterial innovation. Nature 2000, 405(6784):299-304.
  • [26]Jain R, Rivera MC, Moore JE, Lake JA: Horizontal gene transfer in microbial genome evolution. Theor Popul Biol 2002, 61(4):489-495.
  • [27]Andersson JO, Sarchfield SW, Roger AJ: Gene transfers from Nanoarchaeota to an ancestor of diplomonads and parabasalids. Mol Biol Evol 2005, 22(1):85-90.
  • [28]Huang JL, Mullapudi N, Sicheritz-Ponten T, Kissinger JC: A first glimpse into the pattern and scale of gene transfer in the Apicomplexa. Int J Parasitol 2004, 34(3):265-274.
  • [29]Ricard G, McEwan NR, Dutilh BE, Jouany JP, Macheboeuf D, Mitsumori M, McIntosh FM, Michalowski T, Nagamine T, Nelson N, et al.: Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. Bmc Genomics 2006, 7:22.
  • [30]Hackett JD, Yoon HS, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Nosenko T, Bhattacharya D: Migration of the plastid genome to the nucleus in a peridinin dinoflagellate. Curr Biol 2004, 14(3):213-218.
  • [31]Dagan T, Martin W: Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc Natl Acad Sci U S A 2007, 104(3):870-875.
  • [32]Snel B, Bork P, Huynen MA: Genomes in flux: The evolution of archaeal and proteobacterial gene content. Genome Res 2002, 12(1):17-25.
  • [33]Huang JL, Mullapudi N, Lancto CA, Scott M, Abrahamsen MS, Kissinger JC: Phylogenomic evidence supports past endosymbiosis, intracellular and horizontal gene transfer in Cryptosporidium parvum. Genome Biol 2004, 5(11):R88.
  • [34]Philippe H, Zhou Y, Brinkmann H, Rodrigue N, Delsuc F: Heterotachy and long-branch attraction in phylogenetics. BMC Evol Biol 2005, 5:50.
  • [35]Hanten JJ, Pierce SK: Synthesis of several light-harvesting complex I polypeptides is blocked by cycloheximide in symbiotic chloroplasts in the sea slug, Elysia chlorotica (Gould): A case for horizontal gene transfer between alga and animal? Biol Bull 2001, 201(1):34-44.
  • [36]Wooldridge SA: A new conceptual model for the warm-water breakdown of the coral-algae endosymbiosis. Mar Freshw Res 2009, 60(6):483-496.
  • [37]Petherick A: Salamander's egg surprise. Nature 2010, 466(7307):675-675.
  • [38]Rumpho ME, Worful JM, Lee J, Kannan K, Tyler MS, Bhattacharya D, Moustafa A, Manhart JR: Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proc Natl Acad Sci U S A 2008, 105(46):17867-17871.
  • [39]Habetha M, Bosch TCG: Symbiotic Hydra express a plant-like peroxidase gene during oogenesis. J Exp Biol 2005, 208(11):2157-2164.
  • [40]Pierce SK, Fang X, Schwartz JA, Jiang X, Zhao W, Curtis NE, Kocot KM, Yang B, Wang J: Transcriptomic Evidence for the Expression of Horizontally Transferred Algal Nuclear Genes in the Photosynthetic Sea Slug. Molecular biology and evolution: Elysia chlorotica; 2012.
  • [41]Stiller JW, Huang JL, Ding Q, Tian J, Goodwillie C: Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses? Bmc Genomics 2009, 10:484.
  • [42]Bodyl A: Do plastid-related characters support the chromalveolate hypothesis? J Phycol 2005, 41(3):712-719.
  • [43]Tyler BM, Tripathy S, Zhang XM, Dehal P, Jiang RHY, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, et al.: Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 2006, 313(5791):1261-1266.
  • [44]Hannaert V, Saavedra E, Duffieux F, Szikora JP, Rigden DJ, Michels PAM, Opperdoes FR: Plant-like traits associated with metabolism of Trypanosoma parasites. Proc Natl Acad Sci U S A 2003, 100(3):1067-1071.
  • [45]El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, et al.: Comparative genomics of trypanosomatid parasitic protozoa. Science 2005, 309(5733):404-409.
  • [46]Rogers M, Keeling PJ: Lateral transfer and recompartmentalization of Calvin cycle enzymes of plants and algae. J Mol Evol 2004, 58(4):367-375.
  • [47]Andersson JO, Roger AJ: A cyanobacterial gene in nonphotosynthetic protists - An early chloroplast acquisition in eukaryotes? Curr Biol 2002, 12(2):115-119.
  • [48]Whitaker JW, McConkey GA, Westhead DR: The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes. Genome Biol 2009, 10(4):R36.
  • [49]Obornik M, Green BR: Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol Biol Evol 2005, 22(12):2343-2353.
  • [50]Richards TA, Dacks JB, Jenkinson JM, Thornton CR, Talbot NJ: Evolution of filamentous plant pathogens: Gene exchange across eukaryotic kingdoms. Curr Biol 2006, 16(18):1857-1864.
  • [51]Richards TA, Soanes DM, Foster PG, Leonard G, Thomton CR, Talbot NJ: Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. Plant Cell 2009, 21(7):1897-1911.
  • [52]Hotopp JCD, Clark ME, Oliveira DCSG, Foster JM, Fischer P, Torres MC, Giebel JD, Kumar N, Ishmael N, Wang SL, et al.: Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 2007, 317(5845):1753-1756.
  • [53]Klasson L, Kambris Z, Cook PE, Walker T, Sinkins SP: Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti. Bmc Genomics 2009, 10:33.
  • [54]Nikoh N, Tanaka K, Shibata F, Kondo N, Hizume M, Shimada M, Fukatsu T: Wolbachia genome integrated in an insect chromosome: Evolution and fate of laterally transferred endosymbiont genes. Genome Res 2008, 18(2):272-280.
  • [55]Hotopp JCD: Horizontal gene transfer between bacteria and animals. Trends in Genetics 2011, 27(4):157-163.
  • [56]Denker E, Bapteste E, Le Guyader H, Manuel M, Rabet N: Horizontal gene transfer and the evolution of cnidarian stinging cells. Curr Biol 2008, 18(18):R858-R859.
  • [57]Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D, et al.: The dynamic genome of hydra. Nature 2010, 464(7288):592-596.
  • [58]Gladyshev EA, Meselson M, Arkhipova IR: Massive horizontal gene transfer in bdelloid rotifers. Science 2008, 320(5880):1210-1213.
  • [59]Moran NA, Jarvik T: Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 2010, 328(5978):624-627.
  • [60]Craig JP, Bekal S, Hudson M, Domier L, Niblack T, Lambert KN: Analysis of a horizontally transferred pathway involved in vitamin B(6) biosynthesis from the soybean cyst nematode Heterodera glycines. Mol Biol Evol 2008, 25(10):2085-2098.
  • [61]Mayer WE, Schuster LN, Bartelmes G, Dieterich C, Sommer RJ: Horizontal gene transfer of microbial cellulases into nematode genomes is associated with functional assimilation and gene turnover. BMC Evol Biol 2011, 11:13.
  • [62]Danchin EGJ, Rosso MN, Vieira P, de Almeida-Engler J, Coutinho PM, Henrissat B, Abad P: Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc Natl Acad Sci U S A 2010, 107(41):17651-17656.
  • [63]Pace JK, Gilbert C, Clark MS, Feschotte C: Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods. Proc Natl Acad Sci U S A 2008, 105(44):17023-17028.
  • [64]Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou SG, Allen AE, Apt KE, Bechner M, et al.: The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 2004, 306(5693):79-86.
  • [65]Hooper SD, Berg OG: Duplication is more common among laterally transferred genes than among indigenous genes. Genome Biol 2003, 4(8):R48.
  • [66]Sun G, Yang Z, Kosch T, Summers K, Huang J: Evidence for acquisition of virulence effectors in pathogenic chytrids. BMC Evol Biol 2011, 11:195.
  • [67]Novakova E, Moran NA: Diversification of genes for carotenoid biosynthesis in aphids following an ancient transfer from a fungus. Mol Biol Evol 2012, 29(1):313-323.
  • [68]Belbahri L, Calmin G, Mauch F, Andersson JO: Evolution of the cutinase gene family: evidence for lateral gene transfer of a candidate Phytophthora virulence factor. Gene 2008, 408(1–2):1-8.
  • [69]Lawrence JG, Ochman H: Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A 1998, 95(16):9413-9417.
  • [70]Koepsell H, Endou H: The SLC22 drug transporter family. Pflugers Archiv-European J Physiology 2004, 447(5):666-676.
  • [71]Eraly SA, Monte JC, Nigam SK: Novel slc22 transporter homologs in fly, worm, and human clarify the phylogeny of organic anion and cation transporters. Physiological Genomics 2004, 18(1):12-24.
  • [72]Takanaga H, Mackenzie B, Hediger MA: Sodium-dependent ascorbic acid transporter family SLC23. Pflugers Archiv-European J Physiology 2004, 447(5):677-682.
  • [73]Murer H, Forster I, Biber J: The sodium phosphate cotransporter family SLC34. Pflugers Archiv-European J Physiology 2004, 447(5):763-767.
  • [74]Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA, Tibbs GR: Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 1998, 93(5):717-729.
  • [75]Kallberg Y, Oppermann U, Jornvall H, Persson B: Short-chain dehydrogenase/reductase (SDR) relationships: A large family with eight clusters common to human, animal, and plant genomes. Protein Sci 2002, 11(3):636-641.
  • [76]Rokas A: The molecular origins of multicellular transitions. Curr Opin Genet Dev 2008, 18(6):472-478.
  • [77]Rokas A: The Origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 2008, 42:235-251.
  • [78]O'Brien EA, Koski LB, Zhang Y, Yang LS, Wang E, Gray MW, Burger G, Lang BF: TBestDB: a taxonomically broad database of expressed sequence tags (ESTs). Nucleic Acids Res 2007, 35:D445-D451.
  • [79]Huang XQ, Madan A: CAP3: A DNA sequence assembly program. Genome Res 1999, 9(9):868-877.
  • [80]Rice P, Longden I, Bleasby A: EMBOSS: The European molecular biology open software suite. Trends in Genetics 2000, 16(6):276-277.
  • [81]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25(24):4876-4882.
  • [82]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al.: Clustal W and clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
  • [83]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol 2010, 59(3):307-321.
  • [84]Felsenstein J: PHYLIP (Phylogeny Inference Package) version 3.65. Seattle (WA): Department of Genome Sciences, University of Washington; 2005.
  • [85]Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McInerney JO: Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 2006, 6:29.
  • [86]Muller J, Muller K: TREEGRAPH: automated drawing of complex tree figures using an extensible tree description format. Mol Ecol Notes 2004, 4(4):786-788.
  • [87]Stover BC, Muller KF: TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. BMC Bioinforma 2010, 11:7.
  文献评价指标  
  下载次数:6次 浏览次数:2次