BMC Developmental Biology | |
CalpB modulates border cell migration in Drosophila egg chambers | |
Géza Ádám4  Viktor Dombrádi3  Péter Friedrich1  Péter Deák2  Éva Kerekes3  Margit Pál2  Anil Chougule4  Kálmán Somogyi2  Ferencz Sándor Páldy4  Endre Kókai3  | |
[1] Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary;Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary;Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen H-4032, Hungary;Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary | |
关键词: Integrins; Talin; Calpain; Focal adhesion; Proteolysis; Cell motility; | |
Others : 1086573 DOI : 10.1186/1471-213X-12-20 |
|
received in 2011-12-19, accepted in 2012-07-24, 发布年份 2012 | |
【 摘 要 】
Background
Calpains are calcium regulated intracellular cysteine proteases implicated in a variety of physiological functions and pathological conditions. The Drosophila melanogaster genome contains only two genes, CalpA and CalpB coding for canonical, active calpain enzymes. The movement of the border cells in Drosophila egg chambers is a well characterized model of the eukaryotic cell migration. Using this genetically pliable model we can investigate the physiological role of calpains in cell motility.
Results
We demonstrate at the whole organism level that CalpB is implicated in cell migration, while the structurally related CalpA paralog can not fulfill the same function. The downregulation of the CalpB gene by mutations or RNA interference results in a delayed migration of the border cells in Drosophila egg chambers. This phenotype is significantly enhanced when the focal adhesion complex genes encoding for α-PS2 integrin ( if), β-PS integrin ( mys) and talin ( rhea) are silenced. The reduction of CalpB activity diminishes the release of integrins from the rear end of the border cells. The delayed migration and the reduced integrin release phenotypes can be suppressed by expressing wild-type talin-head in the border cells but not talin-headR367A, a mutant form which is not able to bind β-PS integrin. CalpB can cleave talin in vitro, and the two proteins coimmunoprecipitate from Drosophila extracts.
Conclusions
The physiological function of CalpB in border cell motility has been demonstrated in vivo. The genetic interaction between the CalpB and the if, mys, as well as rhea genes, the involvement of active talin head-domains in the process, and the fact that CalpB and talin interact with each other collectively suggest that the limited proteolytic cleavage of talin is one of the possible mechanisms through which CalpB regulates cell migration.
【 授权许可】
2012 Kokai et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150116013053360.pdf | 1826KB | download | |
Figure 6. | 119KB | Image | download |
Figure 5. | 80KB | Image | download |
Figure 4. | 124KB | Image | download |
Figure 3. | 197KB | Image | download |
Figure 2. | 95KB | Image | download |
Figure 1. | 66KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Goll DE, Thompson VF, Li H, Wei W, Cong J: The calpain system. Physiol Rev 2003, 83(3):731-801.
- [2]Huang Y, Wang KK: The calpain family and human disease. Trends Mol Med 2001, 7(8):355-362.
- [3]Saez ME, Ramirez-Lorca R, Moron FJ, Ruiz A: The therapeutic potential of the calpain family: new aspects. Drug Discov Today 2006, 11(19–20):917-923.
- [4]Franco SJ, Huttenlocher A: Regulating cell migration: calpains make the cut. J Cell Sci 2005, 118(Pt 17):3829-38.
- [5]Huttenlocher A, Palecek SP, Lu Q, Zhang W, Mellgren RL, Lauffenburger DA, Ginsberg MH, Horwitz AF: Regulation of cell migration by the calcium-dependent protease calpain. J Biol Chem 1997, 272(52):32719-32722.
- [6]Palecek SP, Huttenlocher A, Horwitz AF, Lauffenburger DA: Physical and biochemical regulation of integrin release during rear detachment of migrating cells. J Cell Sci 1998, 111(Pt 7):929-940.
- [7]Franco SJ, Rodgers MA, Perrin BJ, Han J, Bennin DA, Critchley DR, Huttenlocher A: Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat Cell Biol 2004, 6(10):977-983.
- [8]Chan KT, Bennin DA, Huttenlocher A: Regulation of adhesion dynamics by calpain-mediated proteolysis of focal adhesion kinase (FAK). J Biol Chem 2010, 285(15):11418-26.
- [9]Cortesio CL, Boateng LR, Piazza TM, Bennin DA, Huttenlocher A: Calpain-mediated proteolysis of paxillin negatively regulates focal adhesion dynamics and cell migration. J Biol Chem 2011, 286(12):9998-10006.
- [10]Friedrich P, Tompa P, Farkas A: The calpain-system of Drosophila melanogaster: coming of age. Bioessays 2004, 26(10):1088-1096.
- [11]Montell DJ: Border-cell migration: the race is on. Nat Rev Mol Cell Biol 2003, 4(1):13-24.
- [12]Rorth P: Collective cell migration. Annu Rev Cell Dev Biol 2009, 25:407-429.
- [13]Yue L, Spradling AC: hu-li tai shao, a gene required for ring canal formation during Drosophila oogenesis, encodes a homolog of adducin. Genes Dev 1992, 6(12B):2443-2454.
- [14]Grabbe C, Zervas CG, Hunter T, Brown NH, Palmer RH: Focal adhesion kinase is not required for integrin function or viability in Drosophila. Development 2004, 131(23):5795-5805.
- [15]Farkas A, Tompa P, Schad E, Sinka R, Jekely G, Friedrich P: Autolytic activation and localization in Schneider cells (S2) of calpain B from Drosophila. Biochem J 2004, 378(Pt2):299-305.
- [16]Rørth P, Szabo K, Bailey A, Laverty T, Rehm J, Rubin GM, Weigmann K, Milán M, Benes V, Ansorge W, Cohen SM: Systematic gain-of-function genetics in Drosophila. Development 1998, 125(6):1049-1057.
- [17]Dinkins MB, Fratto VM, Lemosy EK: Integrin alpha chains exhibit distinct temporal and spatial localization patterns in epithelial cells of the Drosophila ovary. Dev Dyn 2008, 237(12):3927-3939.
- [18]Duchek P, Rørth P: Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 2001, 291(5501):131-133.
- [19]Tanentzapf G, Brown NH: An interaction between integrin and the talin FERM domain mediates integrin activation but not linkage to the cytoskeleton. Nat Cell Biol 2006, 8(6):601-606.
- [20]Kovacs L, Alexa A, Klement E, Kokai E, Tantos A, Gogl G, Sperka T, Medzihradszky KF, Tozser J, Dombradi V: Regulation of calpain B from Drosophila melanogaster by phosphorylation. FEBS J 2009, 276(17):4959-4972.
- [21]Arthur JS, Elce JS, Hegadorn C, Williams K, Greer PA: Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division. Mol Cell Biol 2000, 20(12):4474-4481.
- [22]Zimmerman UJ, Boring L, Pak JH, Mukerjee N, Wang KK: The calpain small subunit gene is essential: its inactivation results in embryonic lethality. IUBMB Life 2000, 50(1):63-68.
- [23]Dutt P, Croall DE, Arthur JS, Veyra TD, Williams K, Elce JS, Greer PA: m-Calpain is required for preimplantation embryonic development in mice. BMC Dev Biol 2006, 6:3. BioMed Central Full Text
- [24]Azam M, Andrabi SS, Sahr KE, Kamath L, Kuliopulos A, Chishti AH: Disruption of the mouse mu-calpain gene reveals an essential role in platelet function. Mol Cell Biol 2001, 21(6):2213-2220.
- [25]Richard I, Roudaut C, Marchand S, Baghdiguian S, Herasse M, Stockholm D, Ono Y, Suel L, Bourg N, Sorimachi H: Loss of calpain 3 proteolytic activity leads to muscular dystrophy and to apoptosis-associated IkappaBalpha/nuclear factor kappaB pathway perturbation in mice. J Cell Biol 2000, 151(7):1583-1590.
- [26]Fontenele M, Carneiro K, Agrellos R, Oliveira D, Oliveira-Silva A, Vieira V, Negreiros E, Machado E, Araujo H: The Ca2+−dependent protease Calpain A regulates Cactus/I kappaB levels during Drosophila development in response to maternal Dpp signals. Mech Dev 2009, 1268–9:737-751.
- [27]Stroschein-Stevenson SL, Foley E, O'Farrell PH, Johnson AD: Identification of Drosophila gene products required for phagocytosis of Candida albicans. PLoS Biol 2006, 4(1):e4.
- [28]Osman D, Gobert V, Ponthan F, Heidenreich O, Haenlin M, Waltzer L: A Drosophila model identifies calpains as modulators of the human leukemogenic fusion protein AML1-ETO. Proc Natl Acad Sci U S A 2009, 106(29):12043-12048.
- [29]Llense F, Martin-Blanco E: JNK signaling controls border cell cluster integrity and collective cell migration. Curr Biol 2008, 18(7):538-544.
- [30]Nuzzi PA, Senetar MA, Huttenlocher A: Asymmetric localization of calpain 2 during neutrophil chemotaxis. Mol Biol Cell 2007, 18(3):795-805.
- [31]Huttenlocher A, Horwitz AR: Integrins in cell migration. Cold Spring Harb Perspect Biol 2011, 3(9):a005074.
- [32]Fortier E, Belote JM: Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis 2000, 26(4):240-244.
- [33]Gloor GB, Engels WR: Single fly DNA preps for PCR. Dros Inform Ser 1992, 71:148-149.
- [34]Simms D, Cizdziel PE, Chomczynski P: TRIzolTM: A new reagent for optimal single-step isolation of RNA. FocusR 1993, 15:99.
- [35]Adam C, Henn L, Miskei M, Erdelyi M, Friedrich P, Dombradi V: Conservation of male-specific expression of novel phosphoprotein phosphatases in Drosophila. Dev Genes Evol 2010, 220(3–4):123-128.
- [36]Adam G, Gausz J, Noselli S, Kurucz E, Ando I, Udvardy A: Tissue- and developmental stage-specific changes in the subcellular localization of the 26 S proteasome in the ovary of Drosophila melanogaster. Gene Expr Patterns 2004, 4(3):329-333.
- [37]Harlow E, Lane D: Antibodies: A laboratory manual. Cold Spring Harbor Laboratory Press, Plainview, NY, USA; 1988.
- [38]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227(5259):680-685.
- [39]Pronovost SM, Kokai E, Friedrich P, Kadrmas JL: Affinity purification of FLAG-tagged protein complexes: a cautionary tale. Dros Inf Serv 2010, 93:219-223.