期刊论文详细信息
BMC Infectious Diseases
Anopheles arabiensis seasonal densities and infection rates in relation to landscape classes and climatic parameters in a Sahelian area of Senegal
Ibrahima Dia2  Mawlouth Diallo2  Yamar Ba2  Ousmane Faye1  Jacques-André Ndione4  El Hadji Ndiaye1  Cheikh Talla3  Ndèye Diango Faye1  El Hadji Malick Ngom1 
[1] Université Cheikh Anta Diop de Dakar, Dakar, Sénégal;Unité d’entomologie médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal;Université Gaston Berger, Saint-Louis, Sénégal;Centre de Suivi Ecologique, Dakar, Sénégal
关键词: Malaria transmission;    Climatic parameters;    Landscape classes;    Sahelian area;    Anopheles arabiensis;   
Others  :  1090329
DOI  :  10.1186/s12879-014-0711-0
 received in 2014-08-05, accepted in 2014-12-11,  发布年份 2014
PDF
【 摘 要 】

Background

The influence of environmental and climatic factors on malaria vector bionomics and transmission is an important topic in the context of climatic change particularly at macro-geographical level. Sahelian areas could be particularly affected due to heterogeneous features including high inter-annual variability in rainfall and others associated parameters. Therefore, baseline information on the impact of environmental and climatic factors on malaria transmission at micro-geographical level is required for vector risk management and implementation of control strategies.

Methods

Malaria vectors were collected indoors by pyrethrum spray catches in 14 villages belonging to 4 different landscape classes (wooded savanna, shrubby savanna, bare soils and steppe) in the sylvo-pastoral area of Senegal. Plasmodium falciparum infection rates were determined using an indirect enzyme-linked immunosorbent assay (ELISA).

Results

An. arabiensis was the predominant species in all landscape classes and was the only species collected at the end of the rainy season excepted in villages located in bare soils where it cohabited with An. coluzzii. Mean temperature and relative humidity showed similar variations in all the landscape classes covered whereas rainfall was more heterogeneous in terms of pattern, frequency and amount. The mean densities of An. arabiensis displayed high seasonal differences with peaks observed in August or September. A positive non-significant correlation was observed between An. arabiensis densities for rainfall and humidity whereas a negative non-significant correlation was reported for temperature. Plasmodium falciparum-infected mosquitoes were detected only in wooded savanna and bare soils villages.

Conclusions

These observations suggest key roles played by landscape classes and rainfall in malaria vector densities, infection rates and malaria transmission that could be more pronounced in villages situated in wooded savanna and bare soils. Due to the close relationship between environmental and meteorological parameters in this Sahelian region, additional studies on the impact of these parameters are required to further ascertain their association with entomological parameters involved in malaria transmission. From the public health point of view, such information could be useful for human population settlements as well as for monitoring and modelling purposes giving early warning system for implementation of interventions in these unstable transmission zones.

【 授权许可】

   
2014 Ngom et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150128160110976.pdf 904KB PDF download
Figure 3. 48KB Image download
Figure 2. 31KB Image download
Figure 1. 52KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Githeko AK, Lindsay SW, Confalonieri UE, Patz JA: Changement climatique et maladies à transmission vectorielle: une analyse régionale. Bull OMS 2000, 78:1136-1147.
  • [2]Bouma MJ, Sondorp HE, Van der Kaay HJ: Health and climate change. Lancet 1994, 343:302.
  • [3]Colwell RR, Epstein PR, Gubler D, Maynard N, McMichael AJ, Patz JA, Sack RB, Shope R: Climate change and human health. Science 1998, 279:968-969.
  • [4]Rogers DJ, Randolph SE, Snow RW, Hay SI: Satellite imagery in the study and forecast of malaria. Nature 2002, 415:710-715.
  • [5]Lindblade KA, Walker ED, Onapa AW, Katungu J, Wilson ML: Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda. Trop Med Int Health 2000, 5:263-274.
  • [6]Patz JA, Graczyk TK, Geller N, Vittor AY: Effects of environmental change on emerging parasitic diseases. Int J Parasitol 2000, 30:1395-1405.
  • [7]Lebel T, Diedhiou A, Laurent H: Seasonal cycle and interannual variability of the Sahelian rainfall at hydrological scales. J Geophys Res 2003, 108:83-89.
  • [8]Ijumba JN, Shenton FC, Clarke SE, Mosha FW, Lindsay SW: Irrigated crop production is associated with less malaria than traditional agricultural practices in Tanzania. Trans R Soc Trop Med Hyg 2002, 96:476-480.
  • [9]Keiser J, de Castro MC, Maltese MF, Bos R, Tanner M, Singer BH, Utzinger J: Effect of irrigation and large dams on the burden of malaria on a global and regional scale. Am J Trop Med Hyg 2005, 72:392-406.
  • [10]Mwangangi JM, Shililu J, Muturi EJ, Muriu S, Jacob B, Kabiru EW, Mbogo CM, Githure J, Novak RJ: Anopheles larval abundance and diversity in three rice agro-village complexes Mwea irrigation scheme, central Kenya. Malar J 2010, 9:228. BioMed Central Full Text
  • [11]Jacob BG, Muturi E, Halbig P, Mwangangi J, Wanjogu RK, Mpanga E, Funes J, Shililu J, Githure J, Regens JL, Novak RJ: Environmental abundance of Anopheles (Diptera: Culicidae) larval habitats on land cover change sites in Karima Village, Mwea Rice Scheme, Kenya. Am J Trop Med Hyg 2007, 76:73-80.
  • [12]Krefis AC, Schwarz NG, Nkrumah B, Acquah S, Loag W, Oldeland J, Sarpong N, Adu-Sarkodie Y, Ranft U, May J: Spatial analysis of land cover determinants of malaria incidence in the Ashanti Region. Ghana PLoS One 2011, 6:e17905.
  • [13]Minakawa N, Sonye G, Mogi M, Yan G: Habitat characteristics of Anopheles gambiae s.s. larvae in a Kenyan highland. Med Vet Entomol 2004, 18:301-305.
  • [14]Minakawa N, Munga S, Atieli F, Mushinzimana E, Zhou G, Githeko AK, Yan G: Spatial distribution of anopheline larval habitats in western kenyan highlands: effects of land cover types and topography. Am J Trop Med Hyg 2005, 73:157-165.
  • [15]Fillinger U, Sonye G, Killeen GF, Knols BG, Becker N: The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: operational observations from a rural town in western Kenya. Trop Med Int Health 2004, 9:1274-1289.
  • [16]Shililu J, Mbogo C, Ghebremeskel T, Githure J, Novak R: Mosquito larval habitats in a semiarid ecosystem in Eritrea: impact of larval habitat management on Anopheles arabiensis population. Am J Trop Med Hyg 2007, 76:103-110.
  • [17]Lemasson JJ, Fontenille D, Lochouarn L, Dia I, Simard F, Ba K, Diop A, Diatta M, Molez JF: Comparison of bahavior and vector competence of A. gambiae and A. arabiensis (Diptera: Culicidae) in Barkedji, a sahelian area of Senegal. J Med Entomol 1997, 40:396-403.
  • [18]Molez JF, Diop A, Gaye O, Lemasson JJ, Fontenille D: Morbidité palustre à Barkedji, village du Ferlo, en zone sahélienne du Sénégal. Bull Soc Path Ex 2006, 99:187-190.
  • [19]FAO: Africover, classification de l’occupation du sol. RSC Series; 1997. 70, 80 pp.
  • [20]Conseil Scientifique pour l’Afrique (CSA): Phytogéographie (Yangambi). CCTA, Londres; 1956.
  • [21]Gillies MT, De Meillon B: The Anophelinae of Africa South of the Sahara, 2nd edition. Publ South Afr Ins Med Res 1968, 54:12-36.
  • [22]Fanello C, Santolamazza F, Della Torre A: Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med Vet Entomol 2002, 16:461-464.
  • [23]Wirtz RA, Zavala F, Charoenvit Y, Campbell GH, Burkot TR, Schneider I, Esser KM, Beaudoin RL, Andre RG: Comparative testing of monoclonal antibodies against Plasmodium falciparum sporozoites for ELISA development. Bull WHO 1987, 65:39-45.
  • [24]Traoré-Lamizana M, Fontenille D, Diallo M, Bâ Y, Zeller HG, Mondo M, Adam F, Thonon J, Maïga A: Arbovirus surveillance from 1990 to 1995 in the Barkedji area (Ferlo) of Senegal, a possible natural focus of Rift Valley fever virus. J Med Entomol 2001, 38:480-492.
  • [25]Traore-Lamizana M, Zeller HG, Mondo M, Hervy JP, Adam F, Digoutte JP: Isolations of West Nile and Bagaza viruses from mosquitoes (Diptera: Culicidae) in central Senegal (Ferlo). J Med Entomol 1994, 31:934-938.
  • [26]Dia I, Diallo D, Duchemin JB, Ba Y, Konate L, Costantini C, Diallo M: Comparisons of human-landing catches and odor-baited entry traps for sampling malaria vectors in Senegal. J Med Entomol 2005, 42:104-109.
  • [27]Dia I, Konate L, Samb B, Sarr JB, Diop A, Rogerie F, Faye M, Riveau G, Remoue F, Diallo M, Fontenille D: Bionomics of malaria vectors and relationship with malaria transmission and epidemiology in three physiographic zones in the Senegal River Basin. Acta Trop 2008, 105:145-153.
  • [28]Konate L, Diop A, Sy N, Faye MN, Deng Y, Izri A, Faye O, Mouchet J: Comeback of A. funestus in Sahelian Senegal. Lancet 2001, 358:336.
  • [29]Lacaux JP, Tourre YM, Vignolles C, Ndione JA, Lafaye M: Classification of ponds from high-spatial resolution remote sensing: application to Rift Valley Fever epidemics in Senegal. J R Sensing Env 2007, 106:66-74.
  • [30]Da DF, Diabate A, Mouline K, Lefèvre T, Awono-Ambene HP, Ouedraogo JB, Dabiré KR: Anopheles rufipes remains a potential malaria vector after the first detection of infected specimens in 1960 in Burkina Faso. J Infect Dis Ther 2013, 1:1-3.
  • [31]Coetzee M, Craig M, le Sueur D: Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitol Today 2000, 16:74-77.
  • [32]el Ngom HM, Ndione JA, Ba Y, Konaté L, Faye O, Diallo M, Dia I: Spatio-temporal analysis of host preferences and feeding patterns of malaria vectors in the sylvo-pastoral area of Senegal: impact of landscape classes. Parasit Vectors 2013, 6:332. BioMed Central Full Text
  • [33]Bi P, Tong S, Donald K, Parton K, Ni J: Climatic variables and transmission of malaria: a 12-year data analysis in Shuchen County. Chin Publ Health Rep 2003, 118:65.
  • [34]Gimnig JE, Ombok M, Kamau L, Hawley WA: Characteristics of larval anopheline (Diptera: Culicidae) habitats in Western Kenya. J Med Entomol 2001, 38:282-288.
  • [35]Lindblade KA, Walker ED, Onapa AW, Katungu J, Wilson ML: Highland malaria in Uganda: prospective analysis of an epidemic associated with El Niño. Trans R Soc Trop Med Hyg 1999, 93:480-487.
  • [36]Koenraadt CJM, Githeko AK, Takken W: The effects of rainfall and evapotranspiration on the temporal dynamics of Anopheles gambiae s.s. and Anopheles arabiensis in a Kenyan village. Acta Trop 2004, 90:141-153.
  • [37]Lyimo EO, Takken W, Koella JC: Effect of rearing temperature and larval density on larval survival, age at pupation and adult size of Anopheles gambiae. Entomol Exp Appl 1992, 63:265-271.
  • [38]Bomblies A, Eltahir EA: Assessment of the impact of climate shifts on malaria transmission in the Sahel. Ecohealth 2009, 6:426-437.
  文献评价指标  
  下载次数:51次 浏览次数:44次