期刊论文详细信息
BMC Microbiology
Protein expression dynamics during Escherichia Coli glucose-lactose diauxie
Magnus Palmblad1  André M Deelder1  Ekaterina Mostovenko1 
[1] Department of Parasitology, Biomolecular Mass Spectrometry Unit, Leiden University Medical Center, P.O. Box 9600, Zone L04-Q, 2300 RC Leiden, Netherlands
关键词: glucose-lactose diauxie;    Escherichia coli;    β-galactosidase;    quantitative mass spectrometry;    label-free;   
Others  :  1223679
DOI  :  10.1186/1471-2180-11-126
 received in 2010-12-10, accepted in 2011-06-01,  发布年份 2011
PDF
【 摘 要 】

Background

Escherichia coli is a well-studied anaerobic bacteria which is able to regulate metabolic pathways depending on the type of sugar presented in the medium. We have studied the glucose-lactose shift in E. coli at the protein level using a recently developed mass spectrometry platform.

Method

Cells were grown in minimal medium containing two sugars (glucose and lactose) and analyzed using novel mass spectrometry cluster. The cluster combines the high resolving power and dynamic range of Fourier transform ion cyclotron resonance (FTICR) for accurate mass measurement and quantitation with multiple ion traps for fast and sensitive tandem mass spectrometry. The protein expression profile was followed in time across the glucose-lactose diauxic shift using label-free quantitation from the FTICR data.

Results and Conclusion

The entire dataset was interrogated by KEGG pathway analysis, mapping measured changes in protein abundance onto known metabolic pathways. The obtained results were consistent with previously published gene expression data, with β-galactosidase being the most strongly induced protein during the diauxic shift.

【 授权许可】

   
2011 Mostovenko et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150903131404344.pdf 4653KB PDF download
Figure 5. 103KB Image download
Figure 4. 50KB Image download
Figure 3. 53KB Image download
Figure 2. 133KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Lewis IM: Bacterial Variation with Special Reference to Behavior of Some Mutabile Strains of Colon Bacteria in Synthetic Media. J Bacteriol 1934, 28(6):619-639.
  • [2]Jacob F, Monod J: Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 1961, 3:318-356.
  • [3]Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P: Molecular Biology of the Cell. [http://www.ncbi.nlm.nih.gov/books/NBK26872/figure/A1278/] webcite 4th edition. Garland Science Publishing; 2002.
  • [4]Beckwith JR: Regulation of the lac operon. Recent studies on the regulation of lactose metabolism in Escherichia coli support the operon model. Science 1967, 156(3775):597-604.
  • [5]James P: Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys 1997, 30(4):279-331.
  • [6]Mullner S, Neumann T, Lottspeich F: Proteomics--a new way for drug target discovery. Arzneimittelforschung 1998, 48(1):93-95.
  • [7]Laemmli UK: Cleavage of Structural Proteins during Assembly of Head of Bacteriophage-T4. Nature 1970, 227(5259):680-685.
  • [8]Boschetti E, Righetti PG: The ProteoMiner in the proteomic arena: A non-depleting tool for discovering low-abundance species. Journal of Proteomics 2008, 71(3):255-264.
  • [9]Echan LA, Tang HY, Ali-Khan N, Lee K, Speicher DW: Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics 2005, 5(13):3292-3303.
  • [10]Ong SE, Mann M: Mass spectrometry-based proteomics turns quantitative. Nature Chemical Biology 2005, 1(5):252-262.
  • [11]Elliott MH, Smith DS, Parker CE, Borchers C: Current trends in quantitative proteomics. J Mass Spectrom 2009, 44(12):1637-1660.
  • [12]Palmblad M, van der Burgt YE, Mostovenko E, Dalebout H, Deelder AM: A Novel Mass Spectrometry Cluster for High-Throughput Quantitative Proteomics. J Am Soc Mass Spectrom 2010, 21(6):1002-11.
  • [13]Traxler MF, Chang DE, Conway T: Guanosine 3',5'-bispyrophosphate coordinates global gene expression during glucose-lactose diauxie in Escherichia coli. Proc Natl Acad Sci USA 2006, 103(7):2374-2379.
  • [14]Brown TA: Gene Cloning and DNA Analysis: An Introduction. 6th edition. Chicester, UK: John Wiley and Sons Ltd; 2010.
  • [15]Loomis WF, Magasanik B: Glucose-lactose diauxie in Escherichia coli. J Bacteriol 1967, 93(4):1397-1401.
  • [16]Ferenci T: The recognition of maltodextrins by Escherichia coli. Eur J Biochem 1980, 108(2):631-636.
  • [17]Maechler M, Rousseeuw P, Struyf A, Hubert M: Cluster Analysis Basics and Extensions. [http://cran.r-project.org/web/packages/cluster] webcite
  • [18]Mann M, Kelleher NL: Precision proteomics: the case for high resolution and high mass accuracy. Proc Natl Acad Sci USA 2008, 105(47):18132-18138.
  • [19]Keller A, Eng J, Zhang N, Li XJ, Aebersold R: A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 2005, 1:1-8.
  • [20]Palmblad M, Mills DJ, Bindschedler LV, Cramer R: Chromatographic alignment of LC-MS and LC-MS/MS datasets by genetic algorithm feature extraction. J Am Soc Mass Spectrom 2007, 18(10):1835-1843.
  • [21]Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28(1):27-30.
  文献评价指标  
  下载次数:41次 浏览次数:20次