期刊论文详细信息
BMC Research Notes
In silico modeling of the pore region of a KCNQ4 missense mutant from a patient with hearing loss
Tatsuo Matsunaga1  Sho Hashimoto3  Hiroki Kaneko2  Hideki Mutai1  Kazunori Namba1 
[1] Laboratory of Auditory Disorders, National Institute of Sensory Organs, National Tokyo Medical Center, Tokyo, Japan;Department of Integrated Science in Physics and Biology, College of Humanities and Science, Nihon University, Tokyo, Japan;Department of Otolaryngology, National Sendai Medical Center, Miyagi, Japan
关键词: Structure;    Potassium;    Mutation;    Molecular Modeling;    Hearing loss;    Electrostatic;    Deafness;    Channel;   
Others  :  1166585
DOI  :  10.1186/1756-0500-5-145
 received in 2011-11-28, accepted in 2012-03-15,  发布年份 2012
PDF
【 摘 要 】

Background

Mutation of the voltage-gated potassium channel KCNQ4 causes DFNA2-type nonsyndromic autosomal dominant sensorineural hearing loss. KCNQ4 is expressed predominantly in the auditory sensory outer hair cells, which are critical for sound amplification.

Results

We sequenced KCNQ4 from Japanese patients with sensorineural hearing loss, and identified a novel missense mutation encoding a Tyr270His located at the N-terminus of the highly conserved pore helix sequence. As this patient was not accessible to us and information about them was limited, we used molecular modeling to investigate whether this novel mutation is hypothetically pathogenic. A careful examination of an in silico structural model of the KCNQ4 pore region revealed that the Tyr270His mutation caused an alteration in the electrostatic surface potential of the pore helix.

Conclusion

We propose two possible means by which the Tyr270His mutation causes hearing loss: a positively charged His270 side chain might enhance the helix dipole moment of the pore helix, thereby destabilizing the helix and/or the pore region, or it might disturb transport of K+ through the channel by electrostatic repulsion.

【 授权许可】

   
2012 Matsunaga et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150416050700544.pdf 2377KB PDF download
Figure 4. 239KB Image download
Figure 3. 262KB Image download
Figure 2. 40KB Image download
Figure 1. 108KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Smith RJ, Bale JF Jr, White KR: Sensorineural hearing loss in children. Lancet 2005, 365:879-890.
  • [2]Morton CC, Nance WE: Newborn hearing screening-a silent revolution. N Engl J Med 2006, 354:2151-2164.
  • [3]Kochhar A, Hildebrand MS, Smith RJ: Clinical aspects of hereditary hearing loss. Genet Med 2007, 9:393-408.
  • [4]Coucke P, Van Camp G, Djoyodiharjo B, Smith SD, Frants RR, Padberg GW, Darby JK, Huizing EH, Cremers CW, Kimberling WJ: Linkage of autosomal dominant hearing loss to the short arm of chromosome 1 in two families. N Engl J Med 1994, 331:425-431.
  • [5]Kubisch C, Schroeder BC, Friedrich T, Lütjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ: KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 1999, 96:437-446.
  • [6]Robbins J: KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther 2001, 90:1-19.
  • [7]Topsakal V, Pennings RJ, te Brinke H, Hamel B, Huygen PL, Kremer H, Cremers CW: Phenotype determination guides swift genotyping of a DFNA2/KCNQ4 family with a hot spot mutation (W276S). Otol Neurotol 2005, 26:52-58.
  • [8]Van Hauwe P, Coucke PJ, Ensink RJ, Huygen P, Cremers CW, Van Camp G: Mutations in the KCNQ4 K+ channel gene, responsible for autosomal dominant hearing loss, cluster in the channel pore region. Am J Med Genet 2000, 93:184-187.
  • [9]Coucke PJ, Van Hauwe P, Kelley PM, Kunst H, Schatteman I, Van Velzen D, Meyers J, Ensink RJ, Verstreken M, Declau F, Marres H, Kastury K, Bhasin S, McGuirt WT, Smith RJ, Cremers CW, Van de Heyning P, Willems PJ, Smith SD, Van Camp G: Mutations in the KCNQ4 gene are responsible for autosomal dominant deafness in four DFNA2 families. Hum Mol Genet 1999, 8:1321-1328.
  • [10]Chen X, Wang Q, Ni F, Ma J: Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement. Proc Natl Acad Sci USA 2010, 107:11352-11357.
  • [11]Long SB, Tao X, Campbell EB, MacKinnon R: Atomic structure of a voltage-dependent K + channel in a lipid membrane-like environment. Nature 2007, 450:376-382.
  • [12]Zaika O, Hernandez CC, Bal M, Tolstykh GP, Shapiro MS: Determinants within the turret and pore-loop domains of KCNQ3 K + channels governing functional activity. Biophys J 2008, 95:5121-5137.
  • [13]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [14]Laskowski RA: Enhancing the functional annotation of PDB structures in PDBsum using key figures extracted from the literature. Bioinformatics 2007, 23:1824-1827.
  • [15]Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL Workspace: A web-based environment for protein structure homology modeling. Bioinformatics 2006, 22:195-201.
  • [16]Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T: The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 2009, 37:387-392.
  • [17]Peitsch MC: Protein modeling by E-mail. Bio/Technology 1995, 13:658-660.
  • [18]Bowie JU, Lüthy R, Eisenberg D: A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991, 253:164-170.
  • [19]Lüthy R, Bowie JU, Eisenberg D: Assessment of protein models with three-dimensional profiles. Nature 1992, 356:83-85.
  • [20]Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE: UCSF Chimera-A Visualization System for Exploratory Research and Analysis. J Comput Chem 2004, 25:1605-1612.
  • [21]Hol WG: Effects of the α-helix dipole upon the functioning and structure of proteins and peptides. Adv Biophys 1985, 19:133-165.
  • [22]Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R: The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 1998, 280:69-77.
  • [23]Roux B, MacKinnon R: The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science 1999, 285:100-102.
  • [24]Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R: X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 2002, 415:287-294.
  • [25]Armstrong KM, Baldwin RL: Charged histidine affects alpha-helix stability at all positions in the helix by interacting with the backbone charges. 1993, 90:11337-11340.
  • [26]Xu XH, Yeung ES: Long-range electrostatic trapping of single-protein molecules at a liquid-solid interface. Science 1998, 281:1650-1653.
  • [27]Kang SH, Yeung ES: Dynamics of single-protein molecules at a liquid/solid interface: implications in capillary electrophoresis and chromatography. Anal Chem 2002, 74:6334-6339.
  • [28]Larsen AE, Grier DG: Like-charge attractions in metastable colloidal crystallites. Nature 1995, 385:230-233.
  • [29]Callenberg KM, Choudhary OP, de Forest GL, Gohara DW, Baker NA, Grabe M: APBSmem: a graphical interface for electrostatic calculations at the membrane. PLoS ONE 2010., 5pii: e12722
  • [30]Li N, Tang H, Gai H, Dong X, Wang Q, Yeung ES: Determination of protein surface excess on a liquid/solid interface by single-molecule counting. Anal Bioanalytical Chem 2009, 394:1879-1885.
  • [31]De Leenheer EM, Huygen PL, Coucke PJ, Admiraal RJ, van Camp G, Cremers CW: Longitudinal and cross-sectional phenotype analysis in a new, large Dutch DFNA2/KCNQ4 family. Ann Otol Rhinol Laryngol 2002, 111:267-274.
  • [32]Kim HJ, Lv P, Sihn CR, Yamoah EN: Cellular and molecular mechanisms of autosomal dominant form of progressive hearing loss, DFNA2. J Biol Chem 2011, 286:1517-1527.
  • [33]Matsunaga T, Hirota E, Bito S, Niimi S, Usami S: Clinical course of hearing and language development in GJB2 and non-GJB2 deafness following habilitation with hearing aids. Audiol Neuro 2006, 11:59-68.
  • [34]Matsunaga T: Value of genetic testing in determination of therapy for auditory disorders. Keio J Med 2009, 58:216-222.
  文献评价指标  
  下载次数:82次 浏览次数:34次