BMC Genomics | |
Interspecific and host-related gene expression patterns in nematode-trapping fungi | |
Anders Tunlid1  Dag Ahrén2  Eva Friman1  Johan Bentzer1  Dharmendra Kumar3  Karl-Magnus Andersson1  | |
[1] Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, 223 62 Lund, Sweden;Department of Biology, BILS Bioinformatics Infrastructure for Life Sciences, Lund University, Ecology Building, 223 62 Lund, Sweden;Department of Genetics and Plant Breeding, College of Agriculture, Narendra Deva University of Agriculture and Technology, Kumarganj, Faizabad 224229, Uttar Pradesh (U.P.), India | |
关键词: Nematode-trapping fungi; Meloidogyne hapla; Heterodera schachtii; Comparative transcriptomics; | |
Others : 1128413 DOI : 10.1186/1471-2164-15-968 |
|
received in 2014-02-12, accepted in 2014-09-24, 发布年份 2014 | |
![]() |
【 摘 要 】
Background
Nematode-trapping fungi are soil-living fungi that capture and kill nematodes using special hyphal structures called traps. They display a large diversity of trapping mechanisms and differ in their host preferences. To provide insights into the genetic basis for this variation, we compared the transcriptome expressed by three species of nematode-trapping fungi (Arthrobotrys oligospora, Monacrosporium cionopagum and Arthrobotrys dactyloides, which use adhesive nets, adhesive branches or constricting rings, respectively, to trap nematodes) during infection of two different plant-pathogenic nematode hosts (the root knot nematode Meloidogyne hapla and the sugar beet cyst nematode Heterodera schachtii).
Results
The divergence in gene expression between the fungi was significantly larger than that related to the nematode species being infected. Transcripts predicted to encode secreted proteins and proteins with unknown function (orphans) were overrepresented among the highly expressed transcripts in all fungi. Genes that were highly expressed in all fungi encoded endopeptidases, such as subtilisins and aspartic proteases; cell-surface proteins containing the carbohydrate-binding domain WSC; stress response proteins; membrane transporters; transcription factors; and transcripts containing the Ricin-B lectin domain. Differentially expressed transcripts among the fungal species encoded various lectins, such as the fungal fruit-body lectin and the D-mannose binding lectin; transcription factors; cell-signaling components; proteins containing a WSC domain; and proteins containing a DUF3129 domain. A small set of transcripts were differentially expressed in infections of different host nematodes, including peptidases, WSC domain proteins, tyrosinases, and small secreted proteins with unknown function.
Conclusions
This is the first study on the variation of infection-related gene expression patterns in nematode-trapping fungi infecting different host species. A better understanding of these patterns will facilitate the improvements of these fungi in biological control programs, by providing molecular markers for screening programs and candidates for genetic manipulations of virulence and host preferences.
【 授权许可】
2014 Andersson et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150223023911950.pdf | 1960KB | ![]() |
|
Figure 6. | 64KB | Image | ![]() |
Figure 5. | 183KB | Image | ![]() |
Figure 4. | 97KB | Image | ![]() |
Figure 3. | 94KB | Image | ![]() |
Figure 2. | 111KB | Image | ![]() |
Figure 1. | 196KB | Image | ![]() |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Barron GL: The nematode-destroying fungi. Guelph: Canadian Biological Publications; 1977.
- [2]Tunlid A, Ahrén D: Molecular mechanisms of the interaction between nematode-trapping fungi and nematodes: Lessons from genomics. In Biological control of plant-parasitic nematodes, vol 11. Edited by Davies K, Spiegel Y. Springer: Netherlands; 2011:145-169.
- [3]Dijksterhuis J, Veenhuis M, Harder W, Nordbring-Hertz B: Nematophagous fungi: physiological aspects and structure-function relationships. Adv Microb Physiol 1994, 36:111-143.
- [4]Nordbring-Hertz B, Jansson HB, Tunlid A: Nematophagous Fungi. John Wiley & Sons, Chichester: In Encyclopedia of Life Sciences; 2011.
- [5]Liou GY, Tzean SS: Phylogeny of the genus Arthrobotrys and allied nematode-trapping fungi based on rDNA sequences. Mycologia 1997, 89:876-884.
- [6]Ahrén D, Ursing BM, Tunlid A: Phylogeny of nematode-trapping fungi based on 18S rDNA sequences. FEMS Microbiol Lett 1998, 158:179-184.
- [7]Li Y, Hyde KD, Jeewon R, Cai L, Vijaykrishna D, Zhang KQ: Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. Mycologia 2005, 97:1034-1046.
- [8]Yang Y, Yang E, An ZQ, Liu XZ: Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proc Natl Acad Sci U S A 2007, 104:8379-8384.
- [9]Higgins ML, Pramer D: Fungal Morphogenesis - Ring formation and closure by Arthrobotrys dactyloides. Science 1967, 155:345-346.
- [10]Heintz CE, Pramer D: Ultrastructure of nematode-trapping fungi. J Bacteriol 1972, 110:1163-1170.
- [11]Liu KK, Tian JQ, Xiang MC, Liu XZ: How carnivorous fungi use three-celled constricting rings to trap nematodes. Protein Cell 2012, 3:325-328.
- [12]Tunlid A, Jansson HB, Nordbring-Hertz B: Fungal attachment to nematodes. Mycol Res 1992, 96:401-412.
- [13]Nordbring-Hertz B, Jansson HB, Friman E, Persson Y, Dackman C, Trude H, Poloczek E, Feldman R: Nematophagous fungi. Göttingen, Germany: Institut für den Wissenschaftlichen Film; 1995. Film No. C 1851
- [14]Jansson HB, Nordbring-Hertz B: Interactions between nematophagous fungi and plant-parasitic nematodes - Attraction, induction of trap formation and capture. Nematologica 1980, 26:383-389.
- [15]Rosenzweig WD, Premachandran D, Pramer D: Role of trap lectins in the specificity of nematode capture by fungi. Can J Microbiol 1985, 31:693-695.
- [16]Singh KP, Jaiswal RK, Kumar N, Kumar D: Nematophagous fungi associated with root galls of rice caused by Meloidogyne graminicola and its control by Arthrobotrys dactyloides and Dactylaria brochopaga. J Phytopathol 2007, 155:193-197.
- [17]Kumar D, Singh KP: Assessment of predacity and efficacy of Arthrobotrys dactyloides for biological control of root knot disease of tomato. J Phytopathol 2006, 154:1-5.
- [18]Jaffee BA, Muldoon AE: Susceptibility of root-knot and cyst nematodes to the nematode-trapping fungi Monacrosporium ellipsosporum and M. cionopagum. Soil Biol Biochem 1995, 27:1083-1090.
- [19]Yang J, Wang L, Ji X, Feng Y, Li X, Zou C, Xu J, Ren Y, Mi Q, Wu J, Liu S, Liu Y, Huang X, Wang H, Niu X, Li J, Liang L, Luo Y, Ji K, Zhou W, Yu Z, Li G, Liu Y, Li L, Qiao M, Feng L, Zhang KQ: Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog 2011, 7:e1002179.
- [20]Meerupati T, Andersson KM, Friman E, Kumar D, Tunlid A, Ahrén D: Genomic mechanisms accounting for the adaption to parasitism in nematode-trapping fungi. PLoS Genet 2013, 9:e1003909.
- [21]Tautz D, Domazet-Loso T: The evolutionary origin of orphan genes. Nat Rev Genet 2011, 12:692-702.
- [22]Andersson KM, Meerupati T, Levander F, Friman E, Ahrén D, Tunlid A: Proteome of the nematode-trapping cells of the fungus Monacrosporium haptotylum. Appl Environ Microbiol 2013, 79:4993-5004.
- [23]Williamson VM, Gleason CA: Plant-nematode interactions. Curr Opin Plant 2003, 6:327-333.
- [24]Bird A: The development and organization of skeletal structures in nematodes. In Croll NA: The organization of nematodes. London: Academic Press; 1976:107-137.
- [25]Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL: BLAST plus: architecture and applications. BMC Bioinformatics 2009, 10:421. BioMed Central Full Text
- [26]Suzek BE, Huang HZ, McGarvey P, Mazumder R, Wu CH: UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 2007, 23:1282-1288.
- [27]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106. BioMed Central Full Text
- [28]Kulkarni RD, Kelkar HS, Dean RA: An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem Sci 2003, 28:118-121.
- [29]Nakatogawa H, Ichimura Y, Ohsumi Y: Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 2007, 130:165-178.
- [30]Chen YL, Gao Y, Zhang KQ, Zou CG: Autophagy is required for trap formation in the nematode-trapping fungus Arthrobotrys oligospora. Environ Microbiol Rep 2013, 5:511-517.
- [31]Endo Y, Tsurugi K: RNA N-Glycosidase activity of ricin A-chain - Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem 1987, 262:8128-8130.
- [32]Michiels K, Van Damme EJM, Smagghe G: Plant-insect interactions: What can we learn from plant lectins? Arch Insect Biochem Physiol 2010, 73:193-212.
- [33]Wohlschlager T, Butschi A, Zurfluh K, Vonesch SC, Keller UAD, Gehrig P, Bleuler-Martinez S, Hengartner MO, Aebi M, Kunzler M: Nematotoxicity of Marasmius oreades agglutinin (MOA) depends on glycolipid binding and cysteine protease activity. J Biol Chem 2011, 286:30337-30343.
- [34]Hamshou M, Smagghe G, Shahidi-Noghabi S, De Geyter E, Lannoo N, Van Damme EJM: Insecticidal properties of Sclerotinia sclerotiorum agglutinin and its interaction with insect tissues and cells. Insect Biochem Mol Biol 2010, 40:883-890.
- [35]Tunlid A, Jansson S: Proteases and their involvement in the infection and immobilization of nematodes by the nematophagous fungus Arthrobotrys oligospora. Appl Environ Microbiol 1991, 57:2868-2872.
- [36]Åhman J, Johansson T, Olsson M, Punt PJ, van den Hondel CA, Tunlid A: Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 2002, 68:3408-3415.
- [37]Morano KA, Grant CM, Moye-Rowley WS: The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 2012, 190:1157-1195.
- [38]Heller J, Tudzynski P: Reactive oxygen species in phytopathogenic fungi: Signaling, development, and disease. Annu Rev Phytopathol 2011, 49:369-390.
- [39]Egan MJ, Wang ZY, Jones MA, Smirnoff N, Talbot NJ: Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci U S A 2007, 104:11772-11777.
- [40]Xue CY, Park G, Choi WB, Zheng L, Dean RA, Xu JR: Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus. Plant Cell 2002, 14:2107-2119.
- [41]Rosén S, Ek B, Rask L, Tunlid A: Purification and characterization of a surface lectin from the nematode-trapping fungus Arthrobotrys oligospora. J Gen Microbiol 1992, 138:2663-2672.
- [42]Rosén S, Sjollema K, Veenhuis M, Tunlid A: A cytoplasmic lectin produced by the fungus Arthrobotrys oligospora functions as a storage protein during saprophytic and parasitic growth. Microbiology 1997, 143:2593-2604.
- [43]Balogh J, Tunlid A, Rosén S: Deletion of a lectin gene does not affect the phenotype of the nematode-trapping fungus Arthrobotrys oligospora. Fungal Genet Biol 2003, 39:128-135.
- [44]Winnenburg R, Urban M, Beacham A, Baldwin TK, Holland S, Lindeberg M, Hansen H, Rawlings C, Hammond-Kosack KE, Kohler J: PHI-base update: additions to the pathogen-host interaction database. Nucleic Acids Res 2008, 36:572-576.
- [45]Braun BR, Head WS, Wang MX, Johnson AD: Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 2000, 156:31-44.
- [46]Tzelepis GD, Melin P, Jensen DF, Stenlid J, Karlsson M: Functional analysis of glycoside hydrolase family 18 and 20 genes in Neurospora crassa. Fungal Genet Biol 2012, 49:717-730.
- [47]Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O'Donovan C, Redaschi N, Yeh LS: UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 2004, 32:115-119.
- [48]Nordbring-Hertz B: Dialysis membrane technique for studying microbial interaction. Appl Environ Microbiol 1983, 45:290-293.
- [49]Nordbring-Hertz B: Peptide-induced morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. Physiol Plant 1973, 29:223-233.
- [50]Nordbring-Hertz B: Nematode-induced morphogenesis in predacious fungus Arthrobotrys oligospora. Nematologica 1977, 23:443-451.
- [51]Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J: 5S ribosomal RNA database. Nucleic Acids Res 2002, 30:176-178.
- [52]Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013, 41:D590-D596.
- [53]Wu TD, Watanabe CK: GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 2005, 21:1859-1875.
- [54]Keibler E, Brent M: Eval: a software package for analysis of genome annotations. BMC Bioinformatics 2003, 4:50. BioMed Central Full Text
- [55]Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5:621-628.
- [56]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD: The Pfam protein families database. Nucleic Acids Res 2012, 40:D290-D301.
- [57]Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8:785-786.