期刊论文详细信息
BMC Genomics
Co-occurrence of transcription and translation gene regulatory features underlies coordinated mRNA and protein synthesis
Rivka Dikstein2  Edna Schechtman1  Ana Tamarkin-Ben-Harush2 
[1] Department of Industrial Engineering and Management, Ben Gurion University of the Negev, Beer Sheva 84105, Israel;Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
关键词: uORF;    3′UTR;    5′UTR;    uAUG;    Translation;    Transcription;    TATA-less;    TATA-box;   
Others  :  1216262
DOI  :  10.1186/1471-2164-15-688
 received in 2014-04-10, accepted in 2014-08-14,  发布年份 2014
PDF
【 摘 要 】

Background

Variability in protein levels is generated through intricate control of the different gene decoding phases. Presently little is known about the links between the various gene expression stages. Here we investigated the relationship between transcription and translation regulatory properties encoded in mammalian genes.

Results

We found that the TATA-box, a core promoter element known to enhance transcriptional output, is associated not only with higher mRNA levels but also with positive translation regulatory features and elevated translation efficiency. Further investigation revealed general association between transcription and translation regulatory trends. Specifically, translation inhibitory features such as the presence of upstream AUG (uAUG) and increased lengths of the 5′UTR, the coding sequence and the 3′UTR, are strongly associated with lower translation as well as lower transcriptional rate.

Conclusions

Our findings reveal that co-occurrence of several gene-encoded transcription and translation regulatory features with the same trend substantially contributes to the final mRNA and protein expression levels and enables their coordination.

【 授权许可】

   
2014 Tamarkin-Ben-Harush et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150629140720222.pdf 1385KB PDF download
Figure 6. 62KB Image download
Figure 5. 90KB Image download
Figure 4. 56KB Image download
Figure 3. 58KB Image download
Figure 2. 57KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Dikstein R: The unexpected traits associated with core promoter elements. Transcription 2011, 2(5):201-206.
  • [2]Juven-Gershon T, Hsu JY, Kadonaga JT: Perspectives on the RNA polymerase II core promoter. Biochem Soc Trans 2006, 34(Pt 6):1047-1050.
  • [3]Smale ST, Kadonaga JT: The RNA polymerase II core promoter. Annu Rev Biochem 2003, 72:449-479.
  • [4]Kozak M: Selection of initiation sites by eucaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin. Nucleic Acids Res 1984, 12(9):3873-3893.
  • [5]Kozak M: Initiation of translation in prokaryotes and eukaryotes. Gene 1999, 234(2):187-208.
  • [6]Calvo SE, Pagliarini DJ, Mootha VK: Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci U S A 2009, 106(18):7507-7512.
  • [7]Meijer HA, Thomas AA: Control of eukaryotic protein synthesis by upstream open reading frames in the 5′-untranslated region of an mRNA. Biochem J 2002, 367(Pt 1):1-11.
  • [8]Morris DR, Geballe AP: Upstream open reading frames as regulators of mRNA translation. Mol Cell Biol 2000, 20(23):8635-8642.
  • [9]Kozak M: Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc Natl Acad Sci U S A 1986, 83(9):2850-2854.
  • [10]Kozak M: Structural features in eukaryotic mRNAs that modulate the initiation of translation. The J Biological chemistry 1991, 266(30):19867-19870.
  • [11]Kozak M: A short leader sequence impairs the fidelity of initiation by eukaryotic ribosomes. Gene Expr 1991, 1(2):111-115.
  • [12]Kozak M: Effects of long 5′ leader sequences on initiation by eukaryotic ribosomes in vitro. Gene Expr 1991, 1(2):117-125.
  • [13]Kuersten S, Goodwin EB: The power of the 3′ UTR: translational control and development. Nat Rev Genet 2003, 4(8):626-637.
  • [14]Mazumder B, Seshadri V, Fox PL: Translational control by the 3′-UTR: the ends specify the means. Trends Biochem Sci 2003, 28(2):91-98.
  • [15]Wethmar K, Barbosa-Silva A, Andrade-Navarro MA, Leutz A: uORFdb--a comprehensive literature database on eukaryotic uORF biology. Nucleic Acids Res 2014, 42:60-67.
  • [16]Amir-Zilberstein L, Ainbinder E, Toube L, Yamaguchi Y, Handa H, Dikstein R: Differential regulation of NF-kappaB by elongation factors is determined by core promoter type. Mol Cell Biol 2007, 27(14):5246-5259.
  • [17]Blake WJ, Balazsi G, Kohanski MA, Isaacs FJ, Murphy KF, Kuang Y, Cantor CR, Walt DR, Collins JJ: Phenotypic consequences of promoter-mediated transcriptional noise. Mol Cell 2006, 24(6):853-865.
  • [18]Hoopes BC, LeBlanc JF, Hawley DK: Contributions of the TATA box sequence to rate-limiting steps in transcription initiation by RNA polymerase II. J Mol Biol 1998, 277(5):1015-1031.
  • [19]Marbach-Bar N, Ben-Noon A, Ashkenazi S, Harush AT, Avnit-Sagi T, Walker MD, Dikstein R: Disparity between microRNA levels and promoter strength is associated with initiation rate and Pol II pausing. Nat Commun 2013, 4:2118.
  • [20]Moshonov S, Elfakess R, Golan-Mashiach M, Sinvani H, Dikstein R: Links between core promoter and basic gene features influence gene expression. BMC Genomics 2008, 9(1):92. BioMed Central Full Text
  • [21]Wobbe CR, Struhl K: Yeast and human TATA-binding proteins have nearly identical DNA sequence requirements for transcription in vitro. Mol Cell Biol 1990, 10(8):3859-3867.
  • [22]Iacono M, Mignone F, Pesole G: uAUG and uORFs in human and rodent 5′untranslated mRNAs. Gene 2005, 349:97-105.
  • [23]Matsui M, Yachie N, Okada Y, Saito R, Tomita M: Bioinformatic analysis of post-transcriptional regulation by uORF in human and mouse. FEBS Lett 2007, 581(22):4184-4188.
  • [24]Mignone F, Gissi C, Liuni S, Pesole G: Untranslated regions of mRNAs. Genome Biol 2002, 3(3):REVIEWS0004.
  • [25]Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM: A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 2012, 485(7396):109-113.
  • [26]Ingolia NT, Lareau LF, Weissman JS: Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 2011, 147(4):789-802.
  • [27]Vogel C, Abreu Rde S, Ko D, Le SY, Shapiro BA, Burns SC, Sandhu D, Boutz DR, Marcotte EM, Penalva LO: Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol 2010, 6:400.
  • [28]Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M: Global quantification of mammalian gene expression control. Nature 2011, 473(7347):337-342.
  • [29]Core LJ, Waterfall JJ, Lis JT: Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 2008, 322(5909):1845-1848.
  • [30]Swinburne IA, Miguez DG, Landgraf D, Silver PA: Intron length increases oscillatory periods of gene expression in animal cells. Genes Dev 2008, 22(17):2342-2346.
  • [31]Morachis JM, Murawsky CM, Emerson BM: Regulation of the p53 transcriptional response by structurally diverse core promoters. Genes Dev 2010, 24(2):135-147.
  • [32]Yean D, Gralla J: Transcription reinitiation rate: a special role for the TATA box. Mol Cell Biol 1997, 17(7):3809-3816.
  • [33]Zur H, Tuller T: Transcript features alone enable accurate prediction and understanding of gene expression in S. cerevisiae. BMC Bioinformatics 2013, 14(Suppl 15):S1. BioMed Central Full Text
  • [34]Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J: Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol/ edited by Frederick M Ausubel [et al] 2010, Chapter 19(Unit 19 10):11-21.
  • [35]Goecks J, Nekrutenko A, Taylor J, Galaxy T: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 2010, 11(8):R86. BioMed Central Full Text
  • [36]Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A: Galaxy: a platform for interactive large-scale genome analysis. Genome Res 2005, 15(10):1451-1455.
  文献评价指标  
  下载次数:130次 浏览次数:18次