期刊论文详细信息
BMC Microbiology
Identification of ferredoxin II as a major calcium binding protein in the nitrogen-fixing symbiotic bacterium Mesorhizobium loti
Lorella Navazio3  Antonella Roveri2  Andrea Squartini1  Ernesto Damiani4  Flavia Ercolin3  Mattia Zaccarin2  Roberto Moscatiello3 
[1]Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell’Università 16, Padova, 35020, Legnaro, Italy
[2]Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, Padova, 35131, Italy
[3]Department of Biology, University of Padova, Via U. Bassi 58/B, Padova, 35131, Italy
[4]Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova, 35131, Italy
关键词: Rhizobium-legume symbiosis;    Nitrogen fixation;    Mesorhizobium loti;    Ferredoxin II;    Calcium homeostasis;    Calcium binding proteins;   
Others  :  1137577
DOI  :  10.1186/s12866-015-0352-5
 received in 2014-11-06, accepted in 2015-01-16,  发布年份 2015
PDF
【 摘 要 】

Background

Legumes establish with rhizobial bacteria a nitrogen-fixing symbiosis which is of the utmost importance for both plant nutrition and a sustainable agriculture. Calcium is known to act as a key intracellular messenger in the perception of symbiotic signals by both the host plant and the microbial partner. Regulation of intracellular free Ca2+ concentration, which is a fundamental prerequisite for any Ca2+-based signalling system, is accomplished by complex mechanisms including Ca2+ binding proteins acting as Ca2+ buffers. In this work we investigated the occurrence of Ca2+ binding proteins in Mesorhizobium loti, the specific symbiotic partner of the model legume Lotus japonicus.

Results

A soluble, low molecular weight protein was found to share several biochemical features with the eukaryotic Ca2+-binding proteins calsequestrin and calreticulin, such as Stains-all blue staining on SDS-PAGE, an acidic isoelectric point and a Ca2+-dependent shift of electrophoretic mobility. The protein was purified to homogeneity by an ammonium sulfate precipitation procedure followed by anion-exchange chromatography on DEAE-Cellulose and electroendosmotic preparative electrophoresis. The Ca2+ binding ability of the M. loti protein was demonstrated by 45Ca2+-overlay assays. ESI-Q-TOF MS/MS analyses of the peptides generated after digestion with either trypsin or endoproteinase AspN identified the rhizobial protein as ferredoxin II and confirmed the presence of Ca2+ adducts.

Conclusions

The present data indicate that ferredoxin II is a major Ca2+ binding protein in M. loti that may participate in Ca2+ homeostasis and suggest an evolutionarily ancient origin for protein-based Ca2+ regulatory systems.

【 授权许可】

   
2015 Moscatiello et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150317100555567.pdf 1459KB PDF download
Figure 6. 49KB Image download
Figure 5. 53KB Image download
Figure 4. 14KB Image download
Figure 3. 19KB Image download
Figure 2. 31KB Image download
Figure 1. 30KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Masson-Boivin C, Giraud E, Perret X, Batut J: Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 2009, 17:458-466.
  • [2]Udvardi M, Poole PS: Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 2013, 64:781-805.
  • [3]Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, et al.: Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 2000, 7:331-338.
  • [4]Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, et al.: Genome structure of the legume, Lotus japonicus. DNA Res 2008, 15:227-239.
  • [5]Saeki K, Kouchi H: The Lotus symbiont, Mesorhizobium loti: molecular genetic techniques and application. J Plant Res 2000, 113:457-465.
  • [6]Oldroyd GE: Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 2013, 11:252-263.
  • [7]Moscatiello R, Alberghini S, Squartini A, Mariani P, Navazio L: Evidence for calcium-mediated perception of plant symbiotic signals in aequorin-expressing Mesorhizobium loti. BMC Microbiol 2009, 9:206. BioMed Central Full Text
  • [8]Moscatiello R, Squartini A, Mariani P, Navazio L: Flavonoid-induced calcium signalling in Rhizobium leguminosarum bv. viciae. New Phytol 2010, 188:814-823.
  • [9]Moscatiello R, Baldan B, Squartini A, Mariani P, Navazio L: Oligogalacturonides: novel signaling molecules in rhizobium-legume communications. Mol Plant Microbe Interact 2012, 25:1387-1395.
  • [10]Arrigoni G, Tolin S, Moscatiello R, Masi A, Navazio L, Squartini A: Calcium-dependent regulation of genes for plant nodulation in Rhizobium leguminosarum detected by iTRAQ quantitative proteomic analysis. J Proteome Res 2013, 12:5323-5330.
  • [11]Clapham DE: Calcium signaling. Cell 2007, 131:1047-1058.
  • [12]Case RM, Eisner D, Gurney A, Jones O, Muallem S, Verkhatski A: Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system. Cell Calcium 2007, 42:345-350.
  • [13]Berridge MJ, Lipp P, Bootman MD: The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000, 1:11-21.
  • [14]Prins D, Michalak M: Organellar calcium buffers. Cold Spring Harb Perspect Biol 2011, 3:a004069.
  • [15]Zhao Y, Yunming S, Zhao W, Huang X, Wang D, Brown N, et al.: CcbP, a calcium-binding protein from Anabaena sp. PCC 7120, provides evidence that calcium ions regulate heterocyst differentiation. Proc Natl Acad Sci U S A 2005, 102:5744-5748.
  • [16]Shi Y, Zhao W, Zhang W, Ye Z, Zhao J: Regulation of intracellular free calcium concentration during heterocyst differentiation by HetR and NtcA in Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 2006, 103:11334-11339.
  • [17]Hu Y, Zhang X, Shi Y, Zhou Y, Zhang W, Su X-D, et al.: Structures of Anabaena calcium-binding protein CcbP: insights into Ca2+ signaling during heterocyst differentiation. J Biol Chem 2011, 286:12381-12388.
  • [18]Slupski JR, Ohnishi M, Carpenter MR, Reithmeier RA: Characterization of cardiac calsequestrin. Biochemistry 1987, 26:6539-6544.
  • [19]Damiani E, Heilmann C, Salvatori S, Margreth A: Characterization of high-capacity low-affinity calcium binding protein of liver endoplasmic reticulum: calsequestrin-like and divergent properties. Biochem Biophys Res Commun 1989, 165:973-980.
  • [20]Navazio L, Baldan B, Dainese P, James P, Damiani E, Margreth A, et al.: Evidence that spinach leaves express calreticulin but not calsequestrin. Plant Physiol 1995, 109:983-990.
  • [21]Campbell KP, MacLennan DH, Jorgensen AO: Staining of the Ca2+-binding proteins, calsequestrin, calmodulin, troponin C, and S-100, with the carbocyanine dye “Stains-all”. J Biol Chem 1983, 258:11267-11273.
  • [22]Green MR, Pastewka JV, Peacock AC: Differential staining of phosphoproteins on polyacrylamide gels with a cationic carbocyanine dye. Anal Biochem 1973, 56:43-51.
  • [23]Green MR, Pastewka JV: Identification of sialic acid-rich glycoproteins on polyacrylamide gels. Anal Biochem 1975, 65:66-72.
  • [24]Damiani E, Margreth A: Subcellular fractionation to junctional sarcoplasmic reticulum and biochemical characterization of 170 kDa Ca2+- and low-density-lipoprotein-binding protein in rabbit skeletal muscle. Biochem J 1991, 277:825-832.
  • [25]Milner RE, Baksh S, Shemanko C, Carpenter MR, Smillie L, Vance JA, et al.: Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J Biol Chem 1991, 266:7155-7165.
  • [26]Sigrist CJA, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, et al.: PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform 2002, 3:265-274.
  • [27]Rocha AG, Vothknecht UC: Identification of CP12 as a novel calcium-binding protein in chloroplasts. Plants 2013, 2:530-540.
  • [28]Dodd AN, Kudla J, Sanders D: The language of calcium signaling. Annu Rev Plant Biol 2010, 61:593-620.
  • [29]Cai X, Clapham DE: Ancestral Ca2+ signaling machinery in early animal and fungal evolution. Mol Biol Evol 2012, 29:91-100.
  • [30]Michiels J, Xi C, Verhaert J, Vanderleyden J: The functions of Ca2+ in bacteria: a role for EF-hand proteins? Trends Microbiol 2002, 10:87-93.
  • [31]Dominguez DC: Calcium signalling in bacteria. Mol Microbiol 2004, 54:291-297.
  • [32]Dominguez DC, Guragain M, Patrauchan M. Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium, doi:10.1016/j.ceca.2014.12.006, in press.
  • [33]Oldroyd GE, Murray JD, Poole PS, Downie JA: The rules of engagement in the legume-rhizobial symbiosis. Ann Rev Genet 2011, 45:119-144.
  • [34]Granqvist E, Wysham D, Hazledine S, Kozlowski W, Sun J, Charpentier M, et al.: Buffering capacity explains signal variation in symbiotic calcium oscillations. Plant Physiol 2012, 160:2300-2310.
  • [35]Tatsukami Y, Nambu M, Morisaka H, Kuroda K, Ueda M: Disclosure of the differences of Mesorhizobium loti under the free-living and symbiotic conditions by comparative proteome analysis without bacteroid isolation. BMC Microbiol 2013, 13:180. BioMed Central Full Text
  • [36]Uchiumi T, Ohwada T, Itakura M, Mitsui H, Nukui N, Dawadi P, et al.: Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. J Bacteriol 2004, 186:2439-2448.
  • [37]Karunakaran R, Ramachandran VK, Seaman JC, East AK, Mouhsine B, Mauchline TH, et al.: Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca. J Bacteriol 2009, 191:4002-4014.
  • [38]Young JP, Downer HL, Eardly BD: Phylogeny of the phototrophic rhizobium strain BTAi1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J Bacteriol 1991, 173:2271-2277.
  • [39]Surek B, Kreimer G, Melkonian M, Latzko E: Spinach ferredoxin is a calcium-binding protein. Planta 1987, 171:565-568.
  • [40]Dazzo FB: Leguminous root nodules. In Experimental Microbial Ecology. Edited by Burns R, Slater J. Oxford: Blackwell Scientific Publications; 1982:431-446.
  • [41]Curioni A, Dal Belin Peruffo A, Furegon L: Electroendosmotic preparative electrophoresis: a one-step method for the purification of nearly all the proteins from complex mixtures. Basic Appl Myol 1993, 3:239-244.
  • [42]Damiani E, Volpe P, Margreth A: Coexpression of two isoforms of calsequestrin in rabbit slow-twitch muscle. J Muscle Res Cell Motil 1990, 11:522-530.
  • [43]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227:680-685.
  • [44]Maruyama K, Mikawa T, Ebashi S: Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J Biochem 1984, 95:511-519.
  • [45]Wilkins MR, Lindskog I, Gasteiger E, Bairoch A, Sanchez JC, Hochstrasser DF, et al.: Detailed peptide characterisation using PEPTIDEMASS - a World-Wide-Web-accessible tool. Electrophoresis 1997, 18:403-408.
  文献评价指标  
  下载次数:44次 浏览次数:13次