期刊论文详细信息
BMC Medical Genetics
Case report: a novel KERA mutation associated with cornea plana and its predicted effect on protein function
Zeynep Tümer2  Karen Grønskov2  Hanne Jensen4  Anette Bygum1  Pernille Harris3  Birgitte Bertelsen2  Laura Roos2 
[1] Department of Dermatology, Odense University Hospital, Odense, Denmark;Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, Glostrup 2600, Denmark;Department of Chemistry, Technical University of Denmark, Kemitorvet Build. 207, Kgs. Lyngby, DK-2800, Denmark;Eye Clinic, Department of Ophthalmology, Copenhagen University Hospital, Glostrup, Denmark
关键词: Leucin rich repeat domain;    Protein modelling;    Missense mutation;    KERA protein;    Hypotrichosis;    Cornea plana 2;   
Others  :  1220382
DOI  :  10.1186/s12881-015-0179-9
 received in 2014-07-26, accepted in 2015-05-15,  发布年份 2015
PDF
【 摘 要 】

Background

Cornea plana (CNA) is a hereditary congenital abnormality of the cornea characterized by reduced corneal curvature, extreme hypermetropia, corneal clouding and hazy corneal limbus. The recessive form, CNA2, is associated with homozygous or compound heterozygous mutations of the keratocan gene (KERA) on chromosome 12q22. To date, only nine different disease-associated KERA mutations, including four missense mutations, have been described.

Case presentation

In this report, we present clinical data from a Turkish family with autosomal recessive cornea plana. In some of the affected individuals, hypotrichosis was found. KERA was screened for mutations using Sanger sequencing. We detected a novel KERA variant, p.(Ile225Thr), that segregates with the disease in the homozygous form. The three-dimensional structure of keratocan protein was modelled, and we showed that this missense variation is predicted to destabilize the structure of keratocan, leading to the classical ocular phenotype in the affected individuals. All the four known missense mutations, including the variation found in this family, affect the conserved residues of the leucine rich repeat domain of keratocan. These mutations are predicted to result in destabilization of the protein.

Conclusion

We present the 10th pathogenic KERA mutation identified so far. Protein modelling is a useful tool in predicting the effect of missense mutations. This case underline the importance of the leucin rich repeat domain for the protein function, and this knowledge will ease the interpretation of future findings of mutations in these areas in other families with cornea plana.

【 授权许可】

   
2015 Roos et al.

【 预 览 】
附件列表
Files Size Format View
20150722040352927.pdf 1351KB PDF download
Fig. 2. 68KB Image download
Fig. 1. 54KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

【 参考文献 】
  • [1]Khan AO, Aldahmesh M, Meyer B. Corneal ectasia and hydrops in a patient with autosomal recessive cornea plana. Ophthalmic Genet. 2006; 27(3):99-101.
  • [2]Khan AO, Aldahmesh MA, Al-Gehedan S, Meyer BF, Alkuraya FS. Corneal decompensation in recessive cornea plana. Ophthalmic Genet. 2009; 30(3):142-5.
  • [3]Tahvanainen E, Forsius H, Kolehmainen J, Damsten M, Fellman J, de la Chapelle A. The genetics of cornea plana congenita. J Med Genet. 1996; 33(2):116-9.
  • [4]Khan AO, Aldahmesh M, Meyer B. Recessive cornea plana in the Kingdom of Saudi Arabia. Ophthalmology. 2006; 113(10):1773-1178.
  • [5]Pellegata NS, Dieguez-Lucena JL, Joensuu T, Lau S, Montgomery KT, Krahe R et al.. Mutations in KERA, encoding keratocan, cause cornea plana. Nat Genet. 2000; 25(1):91-5.
  • [6]Tasheva ES, Funderburgh JL, Funderburgh ML, Corpuz LM, Conrad GW. Structure and sequence of the gene encoding human keratocan. DNA Seq. 1999; 10(1):67-74.
  • [7]Liu CY, Shiraishi A, Kao CW, Converse RL, Funderburgh JL, Corpuz LM et al.. The cloning of mouse keratocan cDNA and genomic DNA and the characterization of its expression during eye development. J Biol Chem. 1998; 273(35):22584-8.
  • [8]Ebenezer ND, Patel CB, Hariprasad SM, Chen LL, Patel RJ, Hardcastle AJ et al.. Clinical and molecular characterization of a family with autosomal recessive cornea plana. Arch Ophthalmol. 2005; 123(9):1248-53.
  • [9]Khan A, Al-Saif A, Kambouris M. A novel KERA mutation associated with autosomal recessive cornea plana. Ophthalmic Genet. 2004; 25(2):147-52.
  • [10]Liskova P, Hysi PG, Williams D, Ainsworth JR, Shah S, de la Chapelle A et al.. Study of p.N247S KERA mutation in a British family with cornea plana. Mol Vis. 2007; 13:1339-47.
  • [11]Dudakova L, Palos M, Hardcastle AJ, Liskova P. Corneal endothelial findings in a Czech patient with compound heterozygous mutations in KERA. Ophthalmic Genet. 2014; 35(4):252-4.
  • [12]Hassell JR, Birk DE. The molecular basis of corneal transparency. Exp Eye Res. 2010; 91(3):326-35.
  • [13]Abecasis GR, Auton A, Brooks LD, Depristo MA, Durbin RM et al.. An integreated map of genetic variation from 1,092 human genomes. Nature. 2012; 491(7422):56-65.
  • [14]Tennessen JA, Bigham AW, O’connor TD, Fu W, Kenny EE, Gravel S et al.. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2010; 337(6090):64-9.
  • [15]Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001; 11(5):863-74.
  • [16]Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al.. A method and server for predicting damaging missense mutations. Nat Methods. 2010; 7(4):248-9.
  • [17]Scott PG, McEwan PA, Dodd CM, Bergmann EM, Bishop PN, Bella J. Crystal structure of the dimeric protein core of decorin, the archetypal small leucine-rich repeat proteoglycan. Proc Natl Acad Sci U S A. 2004; 101(44):15633-8.
  • [18]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al.. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 1;25(17):3389-402.
  • [19]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al.. Clustal W and Clustal X version 2.0. Bioinformatics. 2007; 23(21):2947-8.
  • [20]Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006; 15;22(2):195-201.
  • [21]The PyMOL Molecular Graphics System [computer program]. Version Version 1.5.0.4 Schrödinger, New York, USA: LLC; 2014.
  • [22]Offord V, Coffey TJ, Werling D. LRRfinder: a web application for the identification of leucine-rich repeats and an integrative Toll-like receptor database. Dev Comp Immunol. 2010; 34(10):1035-41.
  • [23]Bella J, Hindle KL, McEwan PA, Lovell SC. The leucine-rich repeat structure. Cell Mol Life Sci. 2008; 65(15):2307-33.
  • [24]Kobe B, Deisenhofer J. The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci. 1994; 19(10):415-21.
  • [25]Kobe B, Deisenhofer J. Proteins with leucine-rich repeats. Curr Opin Struct Biol. 1995; 5(3):409-16.
  文献评价指标  
  下载次数:18次 浏览次数:25次