期刊论文详细信息
BMC Research Notes
Horizontal transfer of bacterial polyphosphate kinases to eukaryotes: implications for the ice age and land colonisation
Michael R W Brown1  Paul Hooley2  Michael P Whitehead2 
[1] UCL School of Pharmacy, London WC1N 1AX, UK;School of Applied Sciences, University of Wolverhampton, Wolverhampton, UK
关键词: Stress responses;    PPK2;    PPK1;    Horizontal gene transfer;    Polyphosphates;   
Others  :  1142509
DOI  :  10.1186/1756-0500-6-221
 received in 2012-12-12, accepted in 2013-05-11,  发布年份 2013
PDF
【 摘 要 】

Background

Studies of online database(s) showed that convincing examples of eukaryote PPKs derived from bacteria type PPK1 and PPK2 enzymes are rare and currently confined to a few simple eukaryotes. These enzymes probably represent several separate horizontal transfer events. Retention of such sequences may be an advantage for tolerance to stresses such as desiccation or nutrient depletion for simple eukaryotes that lack more sophisticated adaptations available to multicellular organisms. We propose that the acquisition of encoding sequences for these enzymes by horizontal transfer enhanced the ability of early plants to colonise the land. The improved ability to sequester and release inorganic phosphate for carbon fixation by photosynthetic algae in the ocean may have accelerated or even triggered global glaciation events. There is some evidence for DNA sequences encoding PPKs in a wider range of eukaryotes, notably some invertebrates, though it is unclear that these represent functional genes.

Polyphosphate (poly P) is found in all cells, carrying out a wide range of essential roles. Studied mainly in prokaryotes, the enzymes responsible for synthesis of poly P in eukaryotes (polyphosphate kinases PPKs) are not well understood. The best characterised enzyme from bacteria known to catalyse the formation of high molecular weight polyphosphate from ATP is PPK1 which shows some structural similarity to phospholipase D. A second bacterial PPK (PPK2) resembles thymidylate kinase. Recent reports have suggested a widespread distribution of these bacteria type enzymes in eukaryotes.

Results

On – line databases show evidence for the presence of genes encoding PPK1 in only a limited number of eukaryotes. These include the photosynthetic eukaryotes Ostreococcus tauri, O. lucimarinus, Porphyra yezoensis, Cyanidioschyzon merolae and the moss Physcomitrella patens, as well as the amoeboid symbiont Capsaspora owczarzaki and the non-photosynthetic eukaryotes Dictyostelium (3 species), Polysphondylium pallidum and Thecamonas trahens. A second bacterial PPK (PPK2) is found in just two eukaryotes (O. tauri and the sea anemone Nematostella vectensis). There is some evidence for PPK1 and PPK2 encoding sequences in other eukaryotes but some of these may be artefacts of bacterial contamination of gene libraries.

Conclusions

Evidence for the possible origins of these eukaryote PPK1s and PPK2s and potential prokaryote donors via horizontal gene transfer is presented. The selective advantage of acquiring and maintaining a prokaryote PPK in a eukaryote is proposed to enhance stress tolerance in a changing environment related to the capture and metabolism of inorganic phosphate compounds. Bacterial PPKs may also have enhanced the abilities of marine phytoplankton to sequester phosphate, hence accelerating global carbon fixation.

【 授权许可】

   
2013 Whitehead et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328075634629.pdf 1379KB PDF download
Figure 3. 77KB Image download
Figure 2. 135KB Image download
Figure 1. 274KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Rao NN, Gomez-Garci MR, Kornberg A: Inorganic polyphosphate : essential for growth and survival. Ann Rev Biochem 2009, 78:605-647.
  • [2]Schwartz AW: Phosphorus in prebiotic chemistry. Philos Trans R Soc Lond B Biol Sci 2006, 361:1743-1749.
  • [3]Jones ME, Lipmann F: Chemical and enzymatic synthesis of carbamyl phosphate. Proc Natl Acad Sci U S A 1960, 46:1194-1205.
  • [4]Kulaev IS, Vagabov VM: Polyphosphate metabolism in micro-organisms. Adv Microb Physiol 1983, 24:83-171.
  • [5]Zhang H, Ishige K, Kornberg A: A polyphosphate kinase (PPK2) widely conserved in bacteria. Proc Natl Acad Sci U S A 2002, 99:16678-16683.
  • [6]Kornberg A, Kumble AD: Inorganic polyphosphate in mammalian cells and tissues. J Biol Chem 1995, 270:5818-5822.
  • [7]Brown MRW, Kornberg A: The long and short of it – polyphosphate, PPK and bacterial survival. Trends Biochem Sci 2008, 33:284-290.
  • [8]Brown MRW, Kornberg A: Inorganic polyphosphate in the origin and survival of species. Proc Natl Acad Sci U S A 2004, 101:16085-16087.
  • [9]Zhu Y, Huang W, Lee SSK, Xu W: Crystal structure of a polyphosphate kinase and its implications for polyphosphate synthesis. EMBO Rep 2005, 6:681-687.
  • [10]Shiba T, Itoh H, Kameda A, Kobayashi K, Kawazoe Y, Noguchi T: Polyphosphate:AMP phosphotransferase as a polyphosphate-dependent nucleoside monophosphate kinase in Acinetobacter johnsonii 210A. J Bact 2005, 187:1859-1865.
  • [11]Nocek B, Kochinyan S, Proudfoot M, Brown G, Evdokimova E, Osipiuk J, Edwards AM, Savchenko A, Joachimiak A, Yakunin AF: Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria. Proc Natl Acad Sci U S A 2008, 105:17730-17735.
  • [12]Kuroda A, Murphy H, Cashel M, Kornberg A: Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli. J Biol Chem 1997, 272:21240-21243.
  • [13]Gomez-Garcia MR, Kornberg A: Formation of an actin like filament concurrent with the enzymatic synthesis of inorganic polyphosphate. Proc Natl Acad Sci U S A 2004, 101:15876-15880.
  • [14]Hothorn M, Neumann H, Lenherr ED, Wehner M, Rybin V, Hassa PO, Uttenweiler A, Reinhardt M, Schmidt A, Seiler J, Ladurner AG, Herrmann C, Scheffzek K, Mayer A: Catalytic core of a membrane-associated eukaryotic polyphosphate polymerase. Science 2009, 324:513-516.
  • [15]Reusch RN, Huang R, Koch-Kosuka D: Novel components and enzymatic activities of the human erythrocyte plasma membrane pump. FEBS Letts 1997, 412:592-596.
  • [16]Lonetti A, Szijgyarto Z, Bosch D, Loss O, Azevedo C, Saiardi A: Identification of an evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases. J Biol Chem 2011, 286(37):31966-31974.
  • [17]Schaack S, Gilbert C, Fechotte C: Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 2010, 25:537-546.
  • [18]Hooley P, Whitehead MP, Brown MRW: Eukaryote polyphosphate kinases – is the “Kornberg” complex ubiquitous? Trends Biochem Sci 2008, 33:577-582.
  • [19]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [20]Notre-Dame C, Higgins DG, Heringa J: T-Coffee: A novel method for multiple sequence alignments. J Mol Biol 2000, 302:205-217.
  • [21]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25:4876-4882.
  • [22]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [23]Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O: Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 2008, 36:W465-W469.
  • [24]Page RMD: Treeview. An application to display phylogenetic trees on personal computers. Comp Appl Biosci 1996, 12:357-358.
  • [25]Eichinger LL, Noegel AA: Crawling into a new era – the Dictyostelium genome project. EMBO J 2003, 22:1941-1946.
  • [26]Kornberg A: Abundant microbial inorganic polyphosphate, Poly P kinases are underappreciated. Microbe 2008, 3:119-123.
  • [27]Lang D, Zimmer AD, Rensing SA, Resk R: Exploring plant biodiversity : the Physcomitrella genome and beyond. Trends Plant Sci 2008, 13:542-549.
  • [28]Poptsova MS, Gogarten JP: Using comparative genome analysis to identify problems in annotated microbial genomes. Microbiology 2010, 156:1909-1917.
  • [29]Dunning Hotopp JC, Clark ME, Oliveira DC, Foster JM, Fischer P, Muñoz Torres MC, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J, Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H, Werren JH: Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 2007, 317:1753-1756.
  • [30]Nikoh N, Tanaka K, Shibata F, Kondo N, Hizume M, Shimada M, Fukatsu T: Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes. Genome Res 2008, 18:272-280.
  • [31]Klasson L, Kambris Z, Cook PE, Walker T, Sinkins SP: Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti. BMC Genomics 2009, 10:33. BioMed Central Full Text
  • [32]Finazzi G, Moreau H, Bowler C: Genomic insights into photosynthesis in eukaryotic phytoplankton. Trends Plant Sci 2010, 15:565-572.
  • [33]Huang J, Gogarten JP: Concerted gene recruitment in early plant evolution. Genome Biol 2008, 9:R109. http://genomebiology.com/2008/9/7/R109 webcite
  • [34]Derelle E, Ferraz C, Escande ML, Eychenié S, Cooke R, Piganeau G, Desdevises Y, Bellec L, Moreau H, Grimsley N: Life cycle and genome of OtV5, a large DNA virus of the pelagic marine unicellular green alga Ostreococcus tauri. PLoS One 2008, 3:e2250.
  • [35]Raymond J, Blankenship RE: Horizontal gene transfer in eukaryotic algal evolution. Proc Natl Acad Sci U S A 2003, 100:7419-7420.
  • [36]Rohwer F, Thurber RV: Viruses manipulate the marine environment. Nature 2009, 459:207-212.
  • [37]Richards TA: Genome evolution:horizontal movement in the fungi. Curr Biol 2011, 21:R166.
  • [38]Roy SW, Irimia M: Mystery of intron gain: new data and new models. Trends Genet 2009, 25(2):67-73.
  • [39]Jeffares DC, Mourier T, Penny D: The biology of intron gain and loss. Trends Genet 2006, 22:16-22.
  • [40]Gladyshev EA, Meselson M, Arkhipova IR: Massive horizontal gene transfer in bdelloid rotifers. Science 2008, 320:1210-1213.
  • [41]Roy SW, Irimia M, Penny D: Very little intron gain in Entamoeba histolytica genes laterally transferred from prokaryotes. Mol Biol Evol 2006, 23:1824-1827.
  • [42]Roy SW, Penny D: Patterns of intron loss and gain in plants: intron-loss dominated evolution and genome-wide comparison of O. sativa and A.thaliana. Mol Biol Evol 2007, 24:171-181.
  • [43]Csuros M, Rogozin IB, Koonin EV: A detailed history of intron-rich eukaryotic ancestors inferred from a global survey of 100 complete genomes. PLoS Comp. Biol 2011, 7:e1002150.
  • [44]Gustavsson S, Lebrun A-S, Nordén K, Chaumont F, Johanson U: A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels. Plant Physiol 2003, 139:287-295.
  • [45]Stenoien HK: Compact genes are highly expressed in the moss Physcomitrella patens. J Evol Biol 2007, 20:1223-1229.
  • [46]Markmann-Mulisch U, Hadi MZ, Koepchen K, Alonso JC, Russo VE, Schell J, Reiss B: The organization of Physcomitrella patens RAD51 genes is unique among eukaryotic organisms. Proc Natl Acad Sci U S A 2002, 99:2959-2964.
  • [47]Sucgang R, Kuo A, Tian X, Salerno W, Parikh A, Feasley CL, Dalin E, Tu H, Huang E, Barry K, Lindquist E, Shapiro H, Bruce D, Schmutz J, Salamov A, Fey P, Gaudet P, Anjard C, Babu MM, Basu S, Bushmanova Y, van der Wel H, Katoh-Kurasawa M, Dinh C, Coutinho PM, Saito T, Elias M, Schaap P, Kay RR, Henrissat B, Eichinger L, Rivero F, Putnam NH, West CM, Loomis WF, Chisholm RL, Shaulsky G, Strassmann JE, Queller DC, Kuspa A, Grigoriev IV: Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biol 2011, 12:R20.
  • [48]Hirano K, Nakajima M, Asano K, Nishiyama T, Sakakibara H, Kojima M, Katoh E, Xiang H, Tanahashi T, Hasebe M, Banks JA, Ashikari M, Kitano H, Ueguchi-Tanaka M, Matsuoka M: The GID-1 mediated gibberellin perception mechanism is conserved in the lycophyte Selaginella meoellendorffii but not in the bryophyte Physcomitrella patens. Plant Cell 2007, 19:3058-3079.
  • [49]Yasigawa F, Nishida K, Yoshida M, Ohnuma M, Shimada T, Fujiwara T, Yoshida Y, Misumi O, Kuroiwa H, Kuroiwa T: Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. Plant J 2009, 60:882-893.
  • [50]Mitsuhashi N, Ohnishi M, Sekiguchi Y, Kwon YU, Chang YT, Chung SK, Inoue Y, Reid RJ, Yagisawa H, Mimura T: Phytic acid synthesis and vacuolar accumulation in suspension-cultured cells of Catharanthus roseus induced by high concentration of inorganic phosphate and cations. Plant Physiol 2005, 138:1607-1614.
  • [51]Le Bihan T, Martin SF, Chirnside ES, Van Ooijen G, Barrios-Llerena ME, O’Neill JS, Shliaha PV, Kerr LE, Millar AJ: Shotgun proteomic analysis of the unicellular alga Ostreococcus tauri. J Proteomics 2011, 74:2060-2070.
  • [52]Nishiyama T, Fujita T, Shin-I T, Seki M, Nishide H, Uchiyama I, Kamiya A, Carninci P, Hayashizaki Y, Shinozaki K, Kohara Y, Hasebe M: Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana; implication for land plant evolution. Proc Natl Acad Sci U S A 2003, 100:8007-8012.
  • [53]Emanuelsson O, Brunak S, Von Heijne G, Nielson H: Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protoc 2007, 2:953-971.
  • [54]Zhao J, Zhao J, Niu W, Yao J, Mohr S, Marcotte EM, Lambowitz AM: Group II intron protein localisation insertion sites are affected by polyphosphate. PLoS Biol 2008, 6:e150. http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.0060150 webcite
  • [55]Zhang H, Gomez-Garcia MR, Brown MRW, Kornberg A: Inorganic polyphosphate in Dictyostelium: influence on development, sporulation and predation. Proc Natl Acad Sci U S A 2005, 102:2731-2735.
  • [56]Lenton TM, Crouch M, Johnson M, Pires N, Dolan L: First plants cooled the Ordovician. Nature Geosci 2012, 5:86-89.
  文献评价指标  
  下载次数:9次 浏览次数:10次