期刊论文详细信息
BMC Microbiology
Yersinia pestis insecticidal-like toxin complex (Tc) family proteins: characterization of expression, subcellular localization, and potential role in infection of the flea vector
B Joseph Hinnebusch1  Carleen M Collins3  Samuel I Miller2  Doris L LaRock3  Clayton O Jarrett1  Justin L Spinner1 
[1] Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, 59840, USA;Department of Genome Sciences, Immunology, and Medicine, University of Washington, Seattle, WA, 98195, USA;Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
关键词: Xenopsylla cheopis;    YitR;    YipA;    YitA;    Toxin complex proteins;    Yersinia pestis;   
Others  :  1144725
DOI  :  10.1186/1471-2180-12-296
 received in 2012-10-15, accepted in 2012-12-12,  发布年份 2012
PDF
【 摘 要 】

Background

Toxin complex (Tc) family proteins were first identified as insecticidal toxins in Photorhabdus luminescens and have since been found in a wide range of bacteria. The genome of Yersinia pestis, the causative agent of bubonic plague, contains a locus that encodes the Tc protein homologues YitA, YitB, YitC, and YipA and YipB. Previous microarray data indicate that the Tc genes are highly upregulated by Y. pestis while in the flea vector; however, their role in the infection of fleas and pathogenesis in the mammalian host is unclear.

Results

We show that the Tc proteins YitA and YipA are highly produced by Y. pestis while in the flea but not during growth in brain heart infusion (BHI) broth at the same temperature. Over-production of the LysR-type regulator YitR from an exogenous plasmid increased YitA and YipA synthesis in broth culture. The increase in production of YitA and YipA correlated with the yitR copy number and was temperature-dependent. Although highly synthesized in fleas, deletion of the Tc proteins did not alter survival of Y. pestis in the flea or prevent blockage of the proventriculus. Furthermore, YipA was found to undergo post-translational processing and YipA and YitA are localized to the outer membrane of Y. pestis. YitA was also detected by immunofluorescence microscopy on the surface of Y. pestis. Both YitA and YipA are produced maximally at low temperature but persist for several hours after transfer to 37°C.

Conclusions

Y. pestis Tc proteins are highly expressed in the flea but are not essential for Y. pestis to stably infect or produce a transmissible infection in the flea. However, YitA and YipA localize to the outer membrane and YitA is exposed on the surface, indicating that at least YitA is present on the surface when Y. pestis is transmitted into the mammalian host from the flea.

【 授权许可】

   
2012 Spinner et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150331005506265.pdf 2547KB PDF download
Figure 6. 107KB Image download
Figure 5. 54KB Image download
Figure 4. 74KB Image download
Figure 3. 59KB Image download
Figure 2. 58KB Image download
Figure 1. 105KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Erickson DL, Jarrett CO, Wren BW, Hinnebusch BJ: Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. J Bacteriol 2006, 188(3):1113-1119.
  • [2]Erickson DL, Waterfield NR, Vadyvaloo V, Long D, Fischer ER, ffrench-Constant RH, Hinnebusch BJ: Acute oral toxicity of Yersinia pseudotuberculosis to fleas: implications for the evolution of vector-borne transmission of plague. Cell Microbiol 2007, 9:2658-2666.
  • [3]Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E: Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 1999, 96(24):14043-14048.
  • [4]Hinnebusch BJ, Perry RD, Schwan TG: Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 1996, 273(5273):367-370.
  • [5]Jarrett CO, Deak E, Isherwood KE, Oyston PC, Fischer ER, Whitney AR, Kobayashi SD, DeLeo FR, Hinnebusch BJ: Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Inf Dis 2004, 190:783-792.
  • [6]Darby C, Ananth SL, Tan L, Hinnebusch BJ: Identification of gmhA, a Yersinia pestis gene required for flea blockage, by using a Caenorhabditis elegans biofilm system. Infect Immun 2005, 73(11):7236-7242.
  • [7]Sun YC, Koumoutsi A, Jarrett C, Lawrence K, Gherardini FC, Darby C, Hinnebusch BJ: Differential control of Yersinia pestis biofilm formation in vitro and in the flea vector by two c-di-GMP diguanylate cyclases. PLoS One 2011, 6(4):e19267.
  • [8]Hinnebusch BJ, Rudolph AE, Cherepanov P, Dixon JE, Schwan TG, Forsberg Å: Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 2002, 296:733-735.
  • [9]Vadyvaloo V, Jarrett C, Sturdevant DE, Sebbane F, Hinnebusch BJ: Transit through the flea vector induces a pretransmission innate immunity resistance phenotype in Yersinia pestis. PLoS Pathogens 2010, 6:e10000783.
  • [10]Bowen D, Rocheleau TA, Blackburn M, Andreev O, Golubeva E, Bhartia R, ffrench-Constant RH: Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 1998, 280(5372):2129-2132.
  • [11]Waterfield NR, Bowen DJ, Fetherston JD, Perry RD, ffrench-Constant RH: The tc genes of Photorhabdus: a growing family. Trends Microbiol 2001, 9(4):185-191.
  • [12]Fuchs TM, Bresolin G, Marcinowski L, Schachtner J, Scherer S: Insecticidal genes of Yersinia spp.: taxonomical distribution, contribution to toxicity towards Manduca sexta and Galleria mellonella, and evolution. BMC Microbiol 2008, 8:214. BioMed Central Full Text
  • [13]Munch A, Stingl L, Jung K, Heermann R: Photorhabdus luminescens genes induced upon insect infection. BMC Genomics 2008, 9:229. BioMed Central Full Text
  • [14]Waterfield NR, Dowling A, Sharma S, Daborn PJ, Potter U, ffrench-Constant RH: Oral toxicity of Photorhabdus luminescens W14 toxin complexes in Escherichia coli. Appl Environ Microbiol 2001, 67:5017-5024.
  • [15]Waterfield NR, Hares M, Yang G, Dowling A, ffrench-Constant RH: Potentiation and cellular phenotypes of the insecticidal toxin complexes of Photorhabdus bacteria. Cell Microbiol 2005, 7(3):373-382.
  • [16]Hares MC, Hinchliffe SJ, Strong PC, Eleftherianos I, Dowling AJ, ffrench-Constant RH, Waterfield NR: The Yersinia pseudotuberculosis and Yersinia pestis toxin complex is active against cultured mammalian cells. Microbiology 2008, 154(Pt 11):3503-3517.
  • [17]Lang AE, Schmidt G, Schlosser A, Hey TD, Larrinua IM, Sheets JJ, Mannherz HG, Aktories K: Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering. Science 2010, 327(5969):1139-1142.
  • [18]Gendlina I, Held KG, Bartra SS, Gallis BM, Doneanu CE, Goodlett DR, Plano GV, Collins CM: Identification and type III-dependent secretion of the Yersinia pestis insecticidal-like proteins. Mol Microbiol 2007, 64(5):1214-1227.
  • [19]Motin VL, Georgescu AM, Fitch JP, Gu PP, Nelson DO, Mabery SL, Garnham JB, Sokhansanj BA, Ott LL, Coleman MA, et al.: Temporal global changes in gene expression during temperature transition in Yersinia pestis. J Bacteriol 2004, 186(18):6298-6305.
  • [20]Sebbane F, Lemaitre N, Sturdevant DE, Rebeil R, Virtaneva K, Porcella SF, Hinnebusch BJ: Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague. Proc Natl Acad Sci USA 2006, 103:11766-11771.
  • [21]Pinheiro VB, Ellar DJ: Expression and insecticidal activity of Yersinia pseudotuberculosis and Photorhabdus luminescens toxin complex proteins. Cell Microbiol 2007, 9:2372-2380.
  • [22]Bresolin G, Morgan JA, Ilgen D, Scherer S, Fuchs TM: Low temperature-induced insecticidal activity of Yersinia enterocolitica. Mol Microbiol 2006, 59(2):503-512.
  • [23]Fukuto HS, Svetlanov A, Palmer LE, Karzai AW, Bliska JB: Global gene expression profiling of Yersinia pestis replicating inside macrophages reveals the roles of a putative stress-induced operon in regulating type III secretion and intracellular cell division. Infect Immun 2010, 78(9):3700-3715.
  • [24]Hinnebusch BJ, Sebbane F, Vadyvaloo V: Transcriptional profiling of the Yersinia pestis life cycle. In Yersinia: systems biology and control. Edited by Carniel E, Hinnebusch BJ. Norfolk, UK: Caister Academic Press; 2012:1-18.
  • [25]Lorange EA, Race BL, Sebbane F, Hinnebusch BJ: Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. J Inf Dis 2005, 191:1907-1912.
  • [26]Comer JE, Sturdevant DE, Carmody AB, Virtaneva K, Gardner D, Long D, Rosenke R, Porcella SF, Hinnebusch BJ: Transcriptomic and innate immune responses to Yersinia pestis in the lymph node during bubonic plague. Infect Immun 2010, 78:5086-5098.
  • [27]Sebbane F, Jarrett CO, Gardner D, Long D, Hinnebusch BJ: Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Proc Natl Acad Sci USA 2006, 103:5526-5530.
  • [28]Spinner JL, Hinnebusch BJ: The life stage of Yersinia pestis in the flea vector confers increased resistance to phagocytosis and killing by murine polymorphonuclear leukocytes. Adv Exp Med Biol 2012, 954:159-163.
  • [29]Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000, 97(12):6640-6645.
  • [30]Philippe N, Alcaraz JP, Coursange E, Geiselmann J, Schneider D: Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 2004, 51(3):246-255.
  • [31]Schiemann DA: Synthesis of a selective agar medium for Yersinia enterocolitica. Can J Microbiol 1979, 25(11):1298-1304.
  • [32]Donnenberg MS, Kaper JB: Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 1991, 59(12):4310-4317.
  • [33]Une T, Brubaker RR: In vivo comparison of avirulent Vwa- and Pgm- or Pstr phenotypes of yersiniae. Infect Immun 1984, 43(3):895-900.
  • [34]Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 1985, 33(1):103-119.
  • [35]Wendelboe HG, Bisgaard K: Contaminating antibodies and cross-reactivity. In Immunohistochemical (IHC) staining methods. 5th edition. Edited by Kumar GL, Rudbeck L. Carpinteria, CA: Dako; 2009.
  • [36]Hinnebusch BJ, Fischer ER, Schwan TG: Evaluation of the role of the Yersinia pestis plasminogen activator and other plasmid-encoded factors in temperature-dependent blockage of the flea. J Inf Dis 1998, 178(5):1406-1415.
  • [37]Yamashita S, Lukacik P, Barnard TJ, Noinaj N, Felek S, Tsang TM, Krukonis ES, Hinnebusch BJ, Buchanan SK: Structural insights into Ail-mediated adhesion in Yersinia pestis. Structure 2011, 19(11):1672-1682.
  • [38]Thein M, Sauer G, Paramasivam N, Grin I, Linke D: Efficient subfractionation of gram-negative bacteria for proteomics studies. J Proteome Res 2010, 9(12):6135-6147.
  文献评价指标  
  下载次数:16次 浏览次数:19次