期刊论文详细信息
BMC Neuroscience
Effects of melatonin on the nitric oxide system and protein nitration in the hypobaric hypoxic rat hippocampus
I-Hua Wei2  Ching-Hsiang Wu5  Pin-I Fu2  Ming-Jia Jou1  Kuang-Ti Chen6  Ya-Chieh Wu4  Mang-Hung Tsai2  Chia-Jou Lai6  Chih-Chia Huang3 
[1] School of Chinese Medicine for Post Baccalaureate, I Shou University, No. 1, Sec. 1, Syuecheng Road, Dashu District, Kaohsiung, Taiwan;Department of Anatomy, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan;Department of Psychiatry, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan;Department of Nursing, Ching-Kuo Institute of Management and Health, 336, Fu-Hsin Road, Keelung, Taiwan;Department of Anatomy and Cell Biology, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, Taiwan;Institute of Basic Medical Science, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
关键词: Melatonin;    Protein nitration;    Nitric oxide;    Hypobaric hypoxia;    Hippocampus;   
Others  :  1230646
DOI  :  10.1186/s12868-015-0199-6
 received in 2015-05-26, accepted in 2015-09-08,  发布年份 2015
【 摘 要 】

Background

It is well documented that the nitric oxide (NO) might be directly involved in brain response to hypobaric hypoxia, and could contribute to memory deficiencies. Recent studies have shown that melatonin could attenuate hypoxia or ischemia-induced nerve injuries by decreasing the production of free radicals. The present study, using immunohistochemical and immunoblot methods, aimed to explore whether melatonin treatment may affect the expression of nitric oxide system and protein nitration, and provide neuroprotection in the rat hippocampus injured by hypobaric hypoxia. Prior to hypoxic treatment, adult rats were pretreated with melatonin (100 mg/kg, i.p.) before they were exposed to the altitude chamber with 48 Torr of the partial oxygen concentration (pO 2 ) for 7 h to mimic the ambience of being at 9000 m in height. They were then sacrificed after 0 h, 1, and 3 days of reoxygenation.

Results

The results obtained from the immunohistochemical and immunoblotting analyses showed that the expressions of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), nitrotyrosine (Ntyr) and Caspase 3 in the hypoxic hippocampus were increased from 0 h to 3 days of reoxygenation. Interestingly, the hypoxia-induced increase of nNOS, eNOS, iNOS, Ntyr and Caspase 3 protein expression was significantly depressed in the hypoxic rats treated with melatonin.

Conclusions

Activation of the nitric oxide system and protein nitration constitutes a hippocampal response to hypobaric hypoxia and administration of melatonin could provide new therapeutic avenues to prevent and/or treat the symptoms produced by hypobaric hypoxia.

【 授权许可】

   
2015 Huang et al.

附件列表
Files Size Format View
Fig.6. 14KB Image download
Fig.5. 10KB Image download
Fig.4. 55KB Image download
Fig.3. 13KB Image download
Fig.2. 50KB Image download
Fig.1. 51KB Image download
Fig.6. 14KB Image download
Fig.5. 10KB Image download
Fig.4. 55KB Image download
Fig.3. 13KB Image download
Fig.2. 50KB Image download
Fig.1. 51KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

【 参考文献 】
  • [1]Bahrke MS, Shukitt-Hale B: Effects of altitude on mood, behaviour and cognitive functioning. A review. Sports Med (Auckland, NZ) 1993, 16(2):97-125.
  • [2]Maiti P, Singh SB, Sharma AK, Muthuraju S, Banerjee PK, Ilavazhagan G: Hypobaric hypoxia induces oxidative stress in rat brain. Neurochem Int 2006, 49(8):709-716.
  • [3]Pulsinelli WA: Selective neuronal vulnerability: morphological and molecular characteristics. Prog Brain Res 1985, 63:29-37.
  • [4]Trouvin JH, Prioux-Guyonneau M, Cohen Y, Jacquot C: Rat brain monoamine metabolism and hypobaric hypoxia: a new approach. Gen Pharmacol 1986, 17(1):69-73.
  • [5]Krapivin SV, Romanova VE, Voronina TA, Luk’ianova LD: An electrophysiological study of the brain of rats with different resistances to oxygen deficiency in acute hypoxia. Fiziologicheskii zhurnal SSSR imeni I M Sechenova 1991, 77(7):1-6.
  • [6]Shukitt-Hale B, Kadar T, Marlowe BE, Stillman MJ, Galli RL, Levy A, Devine JA, Lieberman HR: Morphological alterations in the hippocampus following hypobaric hypoxia. Hum Exp Toxicol 1996, 15(4):312-319.
  • [7]Maiti P, Muthuraju S, Ilavazhagan G, Singh SB: Hypobaric hypoxia induces dendritic plasticity in cortical and hippocampal pyramidal neurons in rat brain. Behav Brain Res 2008, 189(2):233-243.
  • [8]Titus AD, Shankaranarayana Rao BS, Harsha HN, Ramkumar K, Srikumar BN, Singh SB, Chattarji S, Raju TR: Hypobaric hypoxia-induced dendritic atrophy of hippocampal neurons is associated with cognitive impairment in adult rats. Neuroscience 2007, 145(1):265-278.
  • [9]Beckman JS: The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J Dev Physiol 1991, 15(1):53-59.
  • [10]Matsuoka Y, Kitamura Y, Tooyama I, Kimura H, Taniguchi T: In vivo hypoxia-induced neuronal damage with an enhancement of neuronal nitric oxide synthase immunoreactivity in hippocampus. Exp Neurol 1997, 146(1):57-66.
  • [11]Encinas JM, Serrano J, Bentura ML, Castro-Blanco S, Fernandez AP, Rodrigo J: Nitric oxide system and protein nitration are modified by an acute hypobaric hypoxia in the adult rat hippocampus. J Neuropathol Exp Neurol 2003, 62(8):863-877.
  • [12]Moncada S, Palmer RM, Higgs EA: Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991, 43(2):109-142.
  • [13]Snyder SH, Bredt DS: Biological roles of nitric oxide. Sci Am. 1992, 266(5):68-71.
  • [14]Goldberg IH: Free radical mechanisms in neocarzinostatin-induced DNA damage. Free Radic Biol Med 1987, 3(1):41-54.
  • [15]Bredt DS, Snyder SH: Nitric oxide, a novel neuronal messenger. Neuron 1992, 8(1):3-11.
  • [16]Brenman JE, Bredt DS: Synaptic signaling by nitric oxide. Curr Opin Neurobiol 1997, 7(3):374-378.
  • [17]Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS: Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 1992, 5(6):834-842.
  • [18]Beckman JS, Koppenol WH: Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996, 271(5 Pt 1):C1424-C1437.
  • [19]Ischiropoulos H, Al-Mehdi AB: Peroxynitrite-mediated oxidative protein modifications. FEBS Lett 1995, 364(3):279-282.
  • [20]Siu AW, Maldonado M, Sanchez-Hidalgo M, Tan DX, Reiter RJ: Protective effects of melatonin in experimental free radical-related ocular diseases. J Pineal Res 2006, 40(2):101-109.
  • [21]Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ: One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 2007, 42(1):28-42.
  • [22]Montilla PL, Tunez IF, Munoz de Agueda C, Gascon FL, Soria JV: Protective role of melatonin and retinol palmitate in oxidative stress and hyperlipidemic nephropathy induced by adriamycin in rats. J Pineal Res 1998, 25(2):86-93.
  • [23]Okatani Y, Wakatsuki A, Kaneda C: Melatonin increases activities of glutathione peroxidase and superoxide dismutase in fetal rat brain. J Pineal Res 2000, 28(2):89-96.
  • [24]Reiter RJ, Tan DX, Terron MP, Flores LJ, Czarnocki Z: Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. Acta Biochim Pol 2007, 54(1):1-9.
  • [25]Reiter RJ, Tan DX, Cabrera J, D’Arpa D: Melatonin and tryptophan derivatives as free radical scavengers and antioxidants. Adv Exp Med Biol 1999, 467:379-387.
  • [26]Encinas JM, Fernandez AP, Salas E, Castro-Blanco S, Munoz P, Rodrigo J, Serrano J: Nitric oxide synthase and NADPH-diaphorase after acute hypobaric hypoxia in the rat caudate putamen. Exp Neurol 2004, 186(1):33-45.
  • [27]Smolen AJ: Image analysis techniques for quantification of immunohistochemical staining in the nervous system. In Quantitative and qualitative microscopy methods in neuroscience. Edited by Conn PME. Academic, San Diego; 1990:208-229.
  • [28]Shukitt-Hale B, Stillman MJ, Welch DI, Levy A, Devine JA, Lieberman HR: Hypobaric hypoxia impairs spatial memory in an elevation-dependent fashion. Behav Neural Biol 1994, 62(3):244-252.
  • [29]Simon DK, Standaert DG: Neuroprotective therapies. Med Clin N Am. 1999, 83(2):509-523.
  • [30]Chang HM, Ling EA, Lue JH, Wen CY, Shieh JY: Melatonin attenuates neuronal NADPH-d/NOS expression in the hypoglossal nucleus of adult rats following peripheral nerve injury. Brain Res 2000, 873(2):243-251.
  • [31]Chang HM, Ling EA, Chen CF, Lue H, Wen CY, Shieh JY: Melatonin attenuates the neuronal NADPH-d/NOS expression in the nodose ganglion of acute hypoxic rats. J Pineal Res 2002, 32(2):65-73.
  • [32]Chang HM, Huang YL, Lan CT, Wu UI, Hu ME, Youn SC: Melatonin preserves superoxide dismutase activity in hypoglossal motoneurons of adult rats following peripheral nerve injury. J Pineal Res 2008, 44(2):172-180.
  • [33]Wei IH, Wu YC, Wen CY, Shieh JY: Green tea polyphenol (−)-epigallocatechin gallate attenuates the neuronal NADPH-d/nNOS expression in the nodose ganglion of acute hypoxic rats. Brain Res 2004, 999(1):73-80.
  • [34]Wei IH, Huang CC, Chang HM, Tseng CY, Tu HC, Wen CY, Shieh JY: Neuronal NADPH-d/NOS expression in the nodose ganglion of severe hypoxic rats with or without mild hypoxic preconditioning. J Chem Neuroanat 2005, 29(2):149-156.
  • [35]Wei IH, Huang CC, Tseng CY, Chang HM, Tu HC, Tsai MH, Wen CY, Shieh JY: Mild hypoxic preconditioning attenuates injury-induced NADPH-d/nNOS expression in brainstem motor neurons of adult rats. J Chem Neuroanat 2008, 35(1):123-132.
  • [36]Wei IH, Tu HC, Huang CC, Tsai MH, Tseng CY, Shieh JY: (−)-Epigallocatechin gallate attenuates NADPH-d/nNOS expression in motor neurons of rats following peripheral nerve injury. BMC Neurosci 2011, 12:52.
  • [37]Wu UI, Mai FD, Sheu JN, Chen LY, Liu YT, Huang HC, Chang HM: Melatonin inhibits microglial activation, reduces pro-inflammatory cytokine levels, and rescues hippocampal neurons of adult rats with acute Klebsiella pneumoniae meningitis. J Pineal Res 2011, 50(2):159-170.
  • [38]Bohme GA, Bon C, Stutzmann JM, Doble A, Blanchard JC: Possible involvement of nitric oxide in long-term potentiation. Eur J Pharmacol 1991, 199(3):379-381.
  • [39]Bohme GA, Bon C, Lemaire M, Reibaud M, Piot O, Stutzmann JM, Doble A, Blanchard JC: Altered synaptic plasticity and memory formation in nitric oxide synthase inhibitor-treated rats. Proc Natl Acad Sci USA 1993, 90(19):9191-9194.
  • [40]Estall LB, Grant SJ, Cicala GA: Inhibition of nitric oxide (NO) production selectively impairs learning and memory in the rat. Pharmacol Biochem Behav 1993, 46(4):959-962.
  • [41]Eliasson MJ, Huang Z, Ferrante RJ, Sasamata M, Molliver ME, Snyder SH, Moskowitz MA: Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J Neurosci Off J Soc Neurosci 1999, 19(14):5910-5918.
  • [42]Serrano J, Encinas JM, Fernandez AP, Rodrigo J, Martinez A: Effects of acute hypobaric hypoxia on the nitric oxide system of the rat cerebral cortex: protective role of nitric oxide inhibitors. Neuroscience 2006, 142(3):799-808.
  • [43]Serrano J, Encinas JM, Salas E, Fernandez AP, Castro-Blanco S, Fernandez-Vizarra P, Bentura ML, Rodrigo J: Hypobaric hypoxia modifies constitutive nitric oxide synthase activity and protein nitration in the rat cerebellum. Brain Res 2003, 976(1):109-119.
  • [44]Sinden JD, Rashid-Doubell F, Kershaw TR, Nelson A, Chadwick A, Jat PS, Noble MD, Hodges H, Gray JA: Recovery of spatial learning by grafts of a conditionally immortalized hippocampal neuroepithelial cell line into the ischaemia-lesioned hippocampus. Neuroscience 1997, 81(3):599-608.
  • [45]Hartman RE, Lee JM, Zipfel GJ, Wozniak DF: Characterizing learning deficits and hippocampal neuron loss following transient global cerebral ischemia in rats. Brain Res 2005, 1043(1–2):48-56.
  • [46]Cazevieille C, Muller A, Meynier F, Bonne C: Superoxide and nitric oxide cooperation in hypoxia/reoxygenation-induced neuron injury. Free Radic Biol Med 1993, 14(4):389-395.
  • [47]Love S: Oxidative stress in brain ischemia. Brain Pathol (Zurich, Switzerland). 1999, 9(1):119-131.
  • [48]Szabo C: The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury. Shock (Augusta, Ga) 1996, 6(2):79-88.
  • [49]Moncada C, Arvin B, Le Peillet E, Meldrum BS: Non-NMDA antagonists protect against kainate more than AMPA toxicity in the rat hippocampus. Neurosci Lett 1991, 133(2):287-290.
  • [50]Lin C, Wu CJ, Wei IH, Tsai MH, Chang NW, Yang TT, Kuo YM: Chronic treadmill running protects hippocampal neurons from hypobaric hypoxia-induced apoptosis in rats. Neuroscience 2013, 231:216-224.
  • [51]Dinerman JL, Dawson TM, Schell MJ, Snowman A, Snyder SH: Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. Proc Natl Acad Sci USA 1994, 91(10):4214-4218.
  • [52]Park JH, Kim BH, Park SJ, Jin JK, Jeon YC, Wen GY, Shin HY, Carp RI, Kim YS: Association of endothelial nitric oxide synthase and mitochondrial dysfunction in the hippocampus of scrapie-infected mice. Hippocampus 2011, 21(3):319-333.
  • [53]Udayabanu M, Kumaran D, Nair RU, Srinivas P, Bhagat N, Aneja R, Katyal A: Nitric oxide associated with iNOS expression inhibits acetylcholinesterase activity and induces memory impairment during acute hypobaric hypoxia. Brain Res 2008, 1230:138-149.
  • [54]Daval JL, Ghersi-Egea JF, Oillet J, Koziel V: A simple method for evaluation of superoxide radical production in neural cells under various culture conditions: application to hypoxia. J Cereb Blood Flow Metabol Off J Int Soc Cereb Blood Flow Metabol 1995, 15(1):71-77.
  • [55]Forman LJ, Liu P, Nagele RG, Yin K, Wong PY: Augmentation of nitric oxide, superoxide, and peroxynitrite production during cerebral ischemia and reperfusion in the rat. Neurochem Res 1998, 23(2):141-148.
  • [56]Eiserich JP, Estevez AG, Bamberg TV, Ye YZ, Chumley PH, Beckman JS, Freeman BA: Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of cellular injury. Proc Natl Acad Sci USA 1999, 96(11):6365-6370.
  • [57]Dziegiel P, Murawska-Cialowicz E, Jethon Z, Januszewska L, Podhorska-Okolow M, Surowiak P, Zawadzki M, Rabczynski J, Zabel M: Melatonin stimulates the activity of protective antioxidative enzymes in myocardial cells of rats in the course of doxorubicin intoxication. J Pineal Res 2003, 35(3):183-187.
  • [58]Manda K, Anzai K, Kumari S, Bhatia AL: Melatonin attenuates radiation-induced learning deficit and brain oxidative stress in mice. Acta Neurobiol Exp 2007, 67(1):63-70.
  • [59]Reiter RJ, Acuna-Castroviejo D, Tan DX, Burkhardt S: Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann NY Acad Sci 2001, 939:200-215.
  • [60]Reiter RJ, Tan DX, Qi W, Manchester LC, Karbownik M, Calvo JR: Pharmacology and physiology of melatonin in the reduction of oxidative stress in vivo. Biol Signals Recept 2000, 9(3–4):160-171.
  • [61]Vural H, Sabuncu T, Arslan SO, Aksoy N: Melatonin inhibits lipid peroxidation and stimulates the antioxidant status of diabetic rats. J Pineal Res 2001, 31(3):193-198.
  • [62]Tomas-Zapico C, Caballero B, Sierra V, Vega-Naredo I, Alvarez-Garcia O, Tolivia D, Rodriguez-Colunga MJ, Coto-Montes A: Survival mechanisms in a physiological oxidative stress model. FASEB J Off Publ Fed Am Soc Exp Biol 2005, 19(14):2066-2068.
  • [63]Pozo D, Reiter RJ, Calvo JR, Guerrero JM: Inhibition of cerebellar nitric oxide synthase and cyclic GMP production by melatonin via complex formation with calmodulin. J Cell Biochem 1997, 65(3):430-442.
  • [64]Blanchard B, Pompon D, Ducrocq C: Nitrosation of melatonin by nitric oxide and peroxynitrite. J Pineal Res 2000, 29(3):184-192.
  文献评价指标  
  下载次数:114次 浏览次数:29次