期刊论文详细信息
BMC Immunology
Multifunctional role of dextran sulfate sodium for in vivo modeling of intestinal diseases
Cynthia A Leifer1  Kaori Sakamoto2  William A Rose1 
[1] Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA;Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
关键词: Toll-like receptor 9;    Intestinal repair;    Inflammatory bowel disease;    Dextran sulfate sodium;   
Others  :  1077892
DOI  :  10.1186/1471-2172-13-41
 received in 2012-04-11, accepted in 2012-07-06,  发布年份 2012
PDF
【 摘 要 】

Background

Inflammatory bowel diseases (IBDs) are chronic, relapsing disorders that affect the gastrointestinal tract of millions of people and continue to increase in incidence each year. While several factors have been associated with development of IBDs, the exact etiology is unknown. Research using animal models of IBDs is beginning to provide insights into how the different factors contribute to disease development. Oral administration of dextran sulfate sodium (DSS) to mice induces a reproducible experimental colitis that models several intestinal lesions associated with IBDs. The murine DSS colitis model can also be adapted to quantify intestinal repair following injury. Understanding the mechanistic basis behind intestinal repair is critical to development of new therapeutics for IBDs because of their chronic relapsing nature.

Results

The murine DSS colitis model was adapted to provide a system enabling the quantification of severe intestinal injury with impaired wound healing or mild intestinal injury with rapid restoration of mucosal integrity, by altering DSS concentrations and including a recovery phase. We showed that through a novel format for presentation of the clinical disease data, the temporal progression of intestinal lesions can be quantified on an individual mouse basis. Additionally, parameters for quantification of DSS-induced alterations in epithelial cell populations are included to provide insights into mechanisms underlying the development of these lesions. For example, the use of the two different model systems showed that toll-like receptor 9, a nucleic acid-sensing pattern recognition receptor, is important for protection only following mild intestinal damage and suggests that this model is superior for identifying proteins necessary for intestinal repair.

Conclusions

We showed that using a murine DSS-induced experimental colitis model system, and presenting data in a longitudinal manner on a per mouse basis, enhanced the usefulness of this model, and provided novel insights into the role of an innate immune receptor in intestinal repair. By elucidating the mechanistic basis of intestinal injury and repair, we can begin to understand the etiology of IBDs, enabling development of novel therapeutics or prophylactics.

【 授权许可】

   
2012 Rose et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141114155053125.pdf 2261KB PDF download
Figure 6. 106KB Image download
Figure 5. 76KB Image download
Figure 4. 250KB Image download
Figure 3. 59KB Image download
Figure 2. 351KB Image download
Figure 1. 96KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Baumgart DC, Sandborn WJ: Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 2007, 369(9573):1641-1657.
  • [2]Khor B, Gardet A, Xavier RJ: Genetics and pathogenesis of inflammatory bowel disease. Nature 2011, 474(7351):307-317.
  • [3]Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW, et al.: Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012, 142(1):46-54. e42; quiz e30
  • [4]Kaser A, Zeissig S, Blumberg RS: Inflammatory bowel disease. Annu Rev Immunol 2010, 28:573-621.
  • [5]Baumgart DC, Carding SR: Inflammatory bowel disease: cause and immunobiology. Lancet 2007, 369(9573):1627-1640.
  • [6]Henderson P, van Limbergen JE, Schwarze J, Wilson DC: Function of the intestinal epithelium and its dysregulation in inflammatory bowel disease. Inflamm Bowel Dis 2011, 17(1):382-395.
  • [7]Sorensen GV, Erichsen R, Svaerke C, Farkas DK, Sorensen HT: Risk of cancer in patients with inflammatory bowel disease and venous thromboembolism: a nationwide cohort study. Inflamm Bowel Dis 2012. (Epub ahead of print)
  • [8]Bernstein CN, Longobardi T, Finlayson G, Blanchard JF: Direct medical cost of managing IBD patients: a Canadian population-based study. Inflamm Bowel Dis 2011, 18(8):1498-1508.
  • [9]Triantafillidis JK, Merikas E, Georgopoulos F: Current and emerging drugs for the treatment of inflammatory bowel disease. Drug Des Devel Ther 2011, 5:185-210.
  • [10]Swaminath A, Lebwohl B, Capiak KM, Present DH: Practice patterns in the use of anti-tumor necrosis factor alpha agents in the management of Crohn's disease: a US national practice survey comparing experts and non-experts. Dig Dis Sci 2011, 56(4):1160-1164.
  • [11]Uhlig HH, Powrie F: Mouse models of intestinal inflammation as tools to understand the pathogenesis of inflammatory bowel disease. Eur J Immunol 2009, 39(8):2021-2026.
  • [12]Vijay-Kumar M, Wu H, Aitken J, Kolachala VL, Neish AS, Sitaraman SV, Gewirtz AT: Activation of toll-like receptor 3 protects against DSS-induced acute colitis. Inflamm Bowel Dis 2007, 13(7):856-864.
  • [13]Maric I, Kucic N, Turk Wensveen T, Smoljan I, Grahovac B, Zoricic Cvek S, Celic T, Bobinac D, Vukicevic S: BMP signaling in the rats with TNBS induced colitis following BMP7 therapy. Am J Physiol Gastrointest Liver Physiol 2012, 302(10):G1151-G1162.
  • [14]Strober W, Fuss IJ, Blumberg RS: The immunology of mucosal models of inflammation. Annu Rev Immunol 2002, 20:495-549.
  • [15]Jurjus AR, Khoury NN, Reimund JM: Animal models of inflammatory bowel disease. J Pharmacol Toxicol Methods 2004, 50(2):81-92.
  • [16]Lin J, Hackam DJ: Worms, flies and four-legged friends: the applicability of biological models to the understanding of intestinal inflammatory diseases. Dis Model Mech 2011, 4(4):447-456.
  • [17]Kawada M, Arihiro A, Mizoguchi E: Insights from advances in research of chemically induced experimental models of human inflammatory bowel disease. World J Gastroenterol 2007, 13(42):5581-5593.
  • [18]O'Hara JR, Feener TD, Fischer CD, Buret AG: Campylobacter jejuni disrupts protective TLR9 signaling in colonic epithelial cells and increases the severity of DSS-induced colitis in mice. Infect Immun 2012, 80(4):1563-1571.
  • [19]Rachmilewitz D, Karmeli F, Takabayashi K, Hayashi T, Leider-Trejo L, Lee J, Leoni LM, Raz E: Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis. Gastroenterology 2002, 122(5):1428-1441.
  • [20]Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R: Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004, 118(2):229-241.
  • [21]Rachmilewitz D, Katakura K, Karmeli F, Hayashi T, Reinus C, Rudensky B, Akira S, Takeda K, Lee J, Takabayashi K, et al.: Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 2004, 126(2):520-528.
  • [22]Lee J, Mo JH, Katakura K, Alkalay I, Rucker AN, Liu YT, Lee HK, Shen C, Cojocaru G, Shenouda S, et al.: Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 2006, 8(12):1327-1336.
  • [23]Koon HW, Shih DQ, Chen J, Bakirtzi K, Hing TC, Law I, Ho S, Ichikawa R, Zhao D, Xu H, et al.: Cathelicidin signaling via the Toll-like receptor protects against colitis in mice. Gastroenterology 2011, 141(5):1852-1863. e1851-1853
  • [24]Owen KA, Abshire MY, Tilghman RW, Casanova JE, Bouton AH: FAK regulates intestinal epithelial cell survival and proliferation during mucosal wound healing. PLoS One 2011, 6(8):e23123.
  • [25]Zimmerman NP, Vongsa RA, Faherty SL, Salzman NH, Dwinell MB: Targeted intestinal epithelial deletion of the chemokine receptor CXCR4 reveals important roles for extracellular-regulated kinase-1/2 in restitution. Lab Invest 2011, 91(7):1040-1055.
  • [26]Williams KL, Fuller CR, Dieleman LA, DaCosta CM, Haldeman KM, Sartor RB, Lund PK: Enhanced survival and mucosal repair after dextran sodium sulfate-induced colitis in transgenic mice that overexpress growth hormone. Gastroenterology 2001, 120(4):925-937.
  • [27]McConnell BB, Kim SS, Bialkowska AB, Yu K, Sitaraman SV, Yang VW: Kruppel-like factor 5 protects against dextran sulfate sodium-induced colonic injury in mice by promoting epithelial repair. Gastroenterology 2011, 140(2):540-549. e542
  • [28]Podolsky DK, Gerken G, Eyking A, Cario E: Colitis-associated variant of TLR2 causes impaired mucosal repair because of TFF3 deficiency. Gastroenterology 2009, 137(1):209-220.
  • [29]Koch S, Nava P, Addis C, Kim W, Denning TL, Li L, Parkos CA, Nusrat A: The Wnt antagonist Dkk1 regulates intestinal epithelial homeostasis and wound repair. Gastroenterology 2011, 141(1):259-268. 268 e251-258
  • [30]Heimesaat MM, Fischer A, Siegmund B, Kupz A, Niebergall J, Fuchs D, Jahn HK, Freudenberg M, Loddenkemper C, Batra A, et al.: Shift towards pro-inflammatory intestinal bacteria aggravates acute murine colitis via Toll-like receptors 2 and 4. PLoS One 2007, 2(7):e662.
  • [31]Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, et al.: NLRP6 Inflammasome Regulates Colonic Microbial Ecology and Risk for Colitis. Cell 2011, 145(5):745-757.
  • [32]Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R: A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 1990, 98(3):694-702.
  • [33]Cooper HS, Murthy S, Kido K, Yoshitake H, Flanigan A: Dysplasia and cancer in the dextran sulfate sodium mouse colitis model. Relevance to colitis-associated neoplasia in the human: a study of histopathology, B-catenin and p53 expression and the role of inflammation. Carcinogenesis 2000, 21(4):757-768.
  • [34]Solomon L, Mansor S, Mallon P, Donnelly E, Hoper M, Loughrey M, Kirk S, Gardiner K: The dextran sulphate sodium (DSS) model of colitis: an overview. Comp Clin Pathol 2010, 19(3):235-239.
  • [35]Cooper HS, Murthy SN, Shah RS, Sedergran DJ: Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 1993, 69(2):238-249.
  • [36]Egger B, Bajaj-Elliott M, MacDonald TT, Inglin R, Eysselein VE, Buchler MW: Characterisation of acute murine dextran sodium sulphate colitis: cytokine profile and dose dependency. Digestion 2000, 62(4):240-248.
  • [37]Shimizu T, Suzuki M, Fujimura J, Hisada K, Yoshikazu O, Obinata K, Yamashiro Y: The relationship between the concentration of dextran sodium sulfate and the degree of induced experimental colitis in weanling rats. J Pediatr Gastroenterol Nutr 2003, 37(4):481-486.
  • [38]Wirtz S, Neufert C, Weigmann B, Neurath MF: Chemically induced mouse models of intestinal inflammation. Nat Protoc 2007, 2(3):541-546.
  • [39]Jawhara S, Poulain D: Saccharomyces boulardii decreases inflammation and intestinal colonization by Candida albicans in a mouse model of chemically-induced colitis. Med Mycol 2007, 45(8):691-700.
  • [40]Okamoto R, Watanabe M: Cellular and molecular mechanisms of the epithelial repair in IBD. Dig Dis Sci 2005, 50(Suppl 1):S34-38.
  • [41]Rakoff-Nahoum S, Hao L, Medzhitov R: Role of toll-like receptors in spontaneous commensal-dependent colitis. Immunity 2006, 25(2):319-329.
  • [42]Fukata M, Michelsen KS, Eri R, Thomas LS, Hu B, Lukasek K, Nast CC, Lechago J, Xu R, Naiki Y, et al.: Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am J Physiol Gastrointest Liver Physiol 2005, 288(5):G1055-1065.
  • [43]Edelblum KL, Washington MK, Koyama T, Robine S, Baccarini M, Polk DB: Raf protects against colitis by promoting mouse colon epithelial cell survival through NF-kappaB. Gastroenterology 2008, 135(2):539-551.
  • [44]Kawai T, Akira S: Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011, 34(5):637-650.
  • [45]Ni J, Chen SF, Hollander D: Effects of dextran sulphate sodium on intestinal epithelial cells and intestinal lymphocytes. Gut 1996, 39(2):234-241.
  • [46]van der Flier LG, Clevers H: Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 2009, 71:241-260.
  • [47]Taupin D, Podolsky DK: Trefoil factors: initiators of mucosal healing. Nat Rev Mol Cell Biol 2003, 4(9):721-732.
  • [48]Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC: The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 2008, 105(39):15064-15069.
  • [49]Garrett WS, Gordon JI, Glimcher LH: Homeostasis and inflammation in the intestine. Cell 2010, 140(6):859-870.
  • [50]Cario E: Toll-like receptors in inflammatory bowel diseases: a decade later. Inflamm Bowel Dis 2010, 16(9):1583-1597.
  • [51]Cario E, Gerken G, Podolsky DK: Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 2007, 132(4):1359-1374.
  • [52]Egan LJ, de Lecea A, Lehrman ED, Myhre GM, Eckmann L, Kagnoff MF: Nuclear factor-kappa B activation promotes restitution of wounded intestinal epithelial monolayers. Am J Physiol Cell Physiol 2003, 285(5):C1028-1035.
  文献评价指标  
  下载次数:18次 浏览次数:3次