期刊论文详细信息
BMC Microbiology
Proteins of novel lactic acid bacteria from Apis mellifera mellifera: an insight into the production of known extra-cellular proteins during microbial stress
Alejandra Vásquez2  Johan Malmström1  Christofer Karlsson3  Tobias C Olofsson2  Magnus Alsterfjord2  Èile Butler2 
[1] Department of Immunotechnology, Lund University BMC D13, Lund SE-221 84, Sweden;Medical Microbiology, Department of Laboratory Medicine, Lund University, Sölvegatan 23, Lund SE-223 62, Sweden;Division of Infection Medicine, Department of Clinical Sciences, Lund University, BMC, B14, Lund 221 84, Sweden
关键词: Honeybee;    Proteomics;    Microbial stress;    Symbionts;    Lactic acid bacteria;   
Others  :  1142825
DOI  :  10.1186/1471-2180-13-235
 received in 2013-07-30, accepted in 2013-10-17,  发布年份 2013
PDF
【 摘 要 】

Background

Lactic acid bacteria (LAB) has been considered a beneficial bacterial group, found as part of the microbiota of diverse hosts, including humans and various animals. However, the mechanisms of how hosts and LAB interact are still poorly understood. Previous work demonstrates that 13 species of Lactobacillus and Bifidobacterium from the honey crop in bees function symbiotically with the honeybee. They protect each other, their hosts, and the surrounding environment against severe bee pathogens, bacteria, and yeasts. Therefore, we hypothesized that these LAB under stress, i.e. in their natural niche in the honey crop, are likely to produce bioactive substances with antimicrobial activity.

Results

The genomic analysis of the LAB demonstrated varying genome sizes ranging from 1.5 to 2.2 mega-base pairs (Mbps) which points out a clear difference within the protein gene content, as well as specialized functions in the honeybee microbiota and their adaptation to their host. We demonstrate a clear variation between the secreted proteins of the symbiotic LAB when subjected to microbial stressors. We have identified that 10 of the 13 LAB produced extra-cellular proteins of known or unknown function in which some are arranged in interesting putative operons that may be involved in antimicrobial action, host interaction, or biofilm formation. The most common known extra-cellular proteins secreted were enzymes, DNA chaperones, S-layer proteins, bacteriocins, and lysozymes. A new bacteriocin may have been identified in one of the LAB symbionts while many proteins with unknown functions were produced which must be investigated further.

Conclusions

The 13 LAB symbionts likely play different roles in their natural environment defending their niche and their host and participating in the honeybee’s food production. These roles are partly played through producing extracellular proteins on exposure to microbial stressors widely found in natural occurring flowers. Many of these secreted proteins may have a putative antimicrobial function. In the future, understanding these processes in this complicated environment may lead to novel applications of honey crop LAB proteins.

【 授权许可】

   
2013 Butler et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328164144975.pdf 3334KB PDF download
Figure 3. 58KB Image download
Figure 2. 39KB Image download
Figure 1. 62KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Pfeiler EA, Klaenhammer T: The genomics of lactic acid bacteria. Trends Microbiol 2007, 15:546.
  • [2]Makarova K, Koonin E: Evolutionary genomics of lactic acid bacteria. J Bacteriol 2007, 189:1199-1208.
  • [3]Stiles M, Holzapfel W: Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 1997, 36:1-29.
  • [4]Lukjancenko O, Ussery D, Wassenaar TM: Comparitive genomics of Bifidobacterium, Lactobacillus and related probiotic genera. Microb Ecol 2012, 63:651-673.
  • [5]De Vuyst L, Vandamme E: Bacteriocins of lactic acid bacteria. Scotland: Blackie Academic & Professional; 1994:320-539.
  • [6]Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M: The extracellular biology of the lactobacilli. FEMS Microbiol Rev 2010, 34:199-230.
  • [7]Hammes WP, Hertel C: The genus Lactobacillus and Carnobacterium. Prokaryotes 2006, 4:320-403.
  • [8]Koonin E: The logic of chance: The nature and origin of biological evolution. New Jersey, US: First. Pearson Education; 2012.
  • [9]Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee J-H, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, et al.: Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 2006, 103:15611-15616.
  • [10]Bottacini F, Milani C, Turroni F, Sanchez B, Foroni E, Duranti S, Serafini F, Viappiani A, Strati F, Ferrarini A, Delledonne M, Henrissat B, Coutinho P, Fitzgerald GF, Margolles A, van Sinderen D, Ventura M: Bifidobacterium asteroides PRL2011 Genome Analysis Reveals Clues for Colonization of the Insect Gut. PLoS One 2012., 7
  • [11]Reid G, Jass J, Sebulsky MT, McCormick JK: Potential uses of probiotics in clinical practice. Clin Microbiol Rev 2003, 16:658-672.
  • [12]Van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P, Robert C, Oztas S, Mangenot S, Couloux A, Loux V, Dervyn R, Bossy R, Bolotin A, Batto J-M, Walunas T, Gibrat J-F, Bessières P, Weissenbach J, Ehrlich SD, Maguin E: The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci U S A 2006, 103:9274-9279.
  • [13]Liu M, Siezen R, Nauta A: In silico prediction of horizontal gene transfer events in Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus reveals proto-cooperation in yoghurt manufacturing. Appl Environ Microbiol 2009, 75:4120.
  • [14]Olofsson TC, Vásquez A: Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honey Bee apis mellifera. Curr Micriobiology 2008, 57:356.
  • [15]Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Olofsson TC: Symbionts as major modulators of insect health: lactic acid bacteria and honey bees. PLoS ONE 7(3):e33188. doi:10.1371/journal.pone.0033188
  • [16]Vásquez A, Olofsson TC: The lactic acid bacteria involved in the production of bee pollen and bee bread. J Apic Res Bee World 2009, 48(3):189-195.
  • [17]Vásquez A, Olofsson TC, Sammataro D: A scientific note on the lactic acid bacterial flora discovered in the honey stomach of Swedish honey bees - a continuing study on honey bees in the USA. Apidologie 2009, 40:26-28.
  • [18]Forsgren E, Olofsson TC, Vásquez A, Fries I: Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 2010, 42:99-108.
  • [19]van de Guchte M, Pascale S, Chervaux C, Smokvina T,DS, Maguin E: Stress responses in lactic acid bacteria. Antonie Van Leeuwenhock 2002, 82:187-216.
  • [20]Desvaux M, Hebraud M, Talon R, Henderson IR: Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 2009, 17:139-145.
  • [21]Zhou M, Theunissen D, Wels M, Siezen R: LAB-secretome: a genome scale comparative analysis of the predicted extracellular and surface associated proteins of lactic acid bacteria. BMC Genomics 2010., 11
  • [22]Patrucia S, Hutu I: Economic benefits of using prebiotic and probiotic products as supplements in stimulation feeds administered to bee colonies. Anim Sci: Turkish J Vet; 2013:37.
  • [23]Deepika G, Charalampopoulus D: Surface and Adhesion properties of Lactobacilli. Advances in Applied Microbiology 2010, 70:127-152.
  • [24]Cotter PD, Hill C, Ross R: Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 2005, 3:777-788.
  • [25]Cintas L, Casaus M, Herranz C, Nes I, Hernandez P: Review: bacteriocins of lactic acid bacteria. Food Sci Technol Int 2001, 7:281-305.
  • [26]Eijsink VG, Axelsson L, Diep DB, Holo H: Production of class II bacteriocins by lactic acid bacteria, an example of biological warfare and communication. Antonie Van Leeuwenhock 2002, 81:639-654.
  • [27]Joerger M, Klaenhammer T: Cloning, expression and nucleotide sequence of the Lactobacillus helveticus 481 gene encoding the bacteriocin helveticin J. J Bacteriol 1990., 172
  • [28]Lee J, Li X, O’Sullivan D: Transcription analysis of the lantibiotic gene cluster from Bifidobacterium longum DJO10A. Appl Environ Microbiol 2011, 77:5879-5887.
  • [29]Pei J, Grishin NV: COG3926 And COG5526: a tale of two new lysozyme-like protein families. Protein Sci 2005, 14:2574-2581.
  • [30]Novik G, Astapovich N, Ryabaya N: Production of Hydrolases by Lactic Acid Bacteria and Bifidobacteria and Their Antibiotic Resistance. Appl Biochem Microbiol 2007, 43:292-297.
  • [31]Pessione E: Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front Cell Infect Microbiol 2012., 2
  • [32]Jeffery CJ: Moonlighting proteins: old proteins learning new tricks. TRENDS Genet 2003, 19:415.
  • [33]Kinoshita H, Uchida H, Kawai Y, Kawasaki T, Wakahara N, Matsuo H, Watanabe M, Kitazawa H, Saito T: Cell Surface Lactobacillus plantarum LA318 glyceraldehyde 3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin. J Appl Microbiol 2008, 104:1667-1674.
  • [34]Hu S, Kong J, Sun Z, Han L, Kong W, Yang P: Heterologous protein display on the cell surface of Lactic acid bacteria mediated by S-layer protein. Microb Cell Fact 2011., 10(86)
  • [35]Sara M, Sleyter UB: S-layer proteins. J Bacteriol 2000, 182:859.
  • [36]Åvall- Jääskeläinen S, Palva A: Lactobacillus surface layers and their applications. FEMS Microbiol Rev 2005, 29:511-529.
  • [37]Poppinga L, Janesch B, Fünfhaus A, Sekot G, Garcia-Gonzalez E, Hertlein G, Hedtke K, Schäffer C, Genersch E: Identification and functional analysis of the S-layer protein SplA of Paenibacillus larvae, the causative agent of american foulbrood of honey bees. PLoS Pathog 2012, 8:e1002716.
  • [38]LeBeer S, Vanderleyden J, De Keersmaecker SC: Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 2008, 72:728-764.
  • [39]Johnson-Henry K, Hagen K, Gordonpour M, Tompkins T, Sherman P: Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells. Cell Microbiol 2007, 9:356-367.
  • [40]Guglielmetti S, Tamagnini I, Mora D, Minuzzo M, Scarafoni A, Arioli S, Hellman J, Parini C: Implication of an outer surface lipoprotein in adhesion of Bifidobacterium bifidum to caco-2 cells. Appl Environ Microbiol 2008., 74
  • [41]Sugimoto S, Al-Mahin A, Sonomoto K: Molecular chaperones in Lactic acid bacteria: physiological consequences and biochemical properties. J Biosci Bioeng 2008, 106:324-336.
  • [42]Flower AM: The secY translocation complex: convergence of genetics and structure. Trends Microbiol 2007, 15:203-210.
  • [43]Bergonzelli GE, Granato D, Pridmore RD, Marvin-Guy LF, Donnicola D: GroEL of Lactobacillus johnsoni La1 (NCC533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect Immun 2006, 74:425.
  • [44]Bukau B, Horwich AL: The Hsp70 and Hsp60 chaperone machines. Cell 1998, 92:351-366.
  • [45]Hu H-J, Yang C-K, Ewis HE, Zhang X-Z, Lu C-D, Pan Y, Abdelal AT, Tai PC: Nonclassical protein secretion by Bacillus subtilis in the stationary phase is not due to cell lysis. J Bacteriol 2011., 193
  • [46]Kwakman PH, te Velde A, de Boer L: Two major medicinal honeys have different mechanisms of bactericidal activity. PLoS One 2011, 6:e17709.
  • [47]Lusby P, Coombes A, Wilkinson J: Bactericidal activity of different honeys against pathogenic bacteria. Elsevier 2005, 36:464-467.
  • [48]Lei B, Mackie S, Musser JM: Identification and immunogenicity of group A Streptococcus culture supernatant proteins. Infect Immun 2000, 68:6807-6818.
  • [49]Karlsson C, Malmström L, Aebersold R, Malmström J: Proteome-wide selected reaction monitoring assays for the human pathogen Streptococcus pyogenes. Nat Commun 2012, 3:2367.
  • [50]Schägger H: Tricine-SDS-PAGE. Nat Protoc 2006, 1:16-22.
  • [51]Shevchenko A, Wilm M, Vorm O, Mann M: Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996, 68:850.
  • [52]Perkins DN, Pappin DJ, Creasy D, Cottrell J: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20:3551-3567.
  • [53]Altschul SF, Gish W, Miller W, Myers E, Lipman D: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [54]Camacho C, Coulouris G, Avagyan V, Ma N, Papadopolous J, Bealer K, Madden TL: BLAST+: architecture and explanations. BM Bioinforma 2009, 10:421.
  • [55]Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A: The pfam protein families database. Nucleic Acids Res 2010, 38:D211-D222. Database issue
  • [56]Zdobnov EM: Apweiler R: signature-recognition methods in InterPro. 2001, 17:847-848.
  • [57]Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R: A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 2010, 38:W695-W699. Web Server issue
  • [58]Ermolaeva MD, Khalak HG, White O, Smith HO, Salzberg SL: Prediction of transcription terminators in bacterial genomes. J Mol Biol 2000, 301:27-33.
  • [59]Côté RG, Griss J, Dianes JA, Wang R, Wright JC, van den Toorn HWP, van Breukelen B, Heck AJR, Hulstaert N, Martens L, Reisinger F, Csordas A, Ovelleiro D, Perez-Rivevol Y, Barsnes H, Hermjakob H, Vizcaíno JA: The PRoteomics IDEntification (PRIDE) Converter 2 framework: an improved suite of tools to facilitate data submission to the PRIDE database and the ProteomeXchange consortium. Mol Cell Proteomics 2012, 11:1682-1689.
  • [60]NCBI BLAST [ http://blast.ncbi.nlm.nih.gov/ webcite]
  文献评价指标  
  下载次数:32次 浏览次数:47次