期刊论文详细信息
BMC Microbiology
Characterization of the β-barrel assembly machine accessory lipoproteins from Borrelia burgdorferi
Darrin R Akins1  Henna Iqbal1  Melisha R Kenedy1  Joshua P Dunn1 
[1]Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City 73104, OK, USA
关键词: BamD;    BamB;    BamA;    Lipoproteins;    BAM complex;    Lyme disease;    Borrelia burgdorferi;   
Others  :  1212081
DOI  :  10.1186/s12866-015-0411-y
 received in 2015-01-14, accepted in 2015-03-12,  发布年份 2015
PDF
【 摘 要 】

Background

Like all diderm bacteria studied to date, Borrelia burgdorferi possesses a β-barrel assembly machine (BAM) complex. The bacterial BAM complexes characterized thus far consist of an essential integral outer membrane protein designated BamA and one or more accessory proteins. The accessory proteins are typically lipid-modified proteins anchored to the inner leaflet of the outer membrane through their lipid moieties. We previously identified and characterized the B. burgdorferi BamA protein in detail and more recently identified two lipoproteins encoded by open reading frames bb0324 and bb0028 that associate with the borrelial BamA protein. The role(s) of the BAM accessory lipoproteins in B. burgdorferi is currently unknown.

Results

Structural modeling of B. burgdorferi BB0028 revealed a distinct β-propeller fold similar to the known structure for the E. coli BAM accessory lipoprotein BamB. Additionally, the structural model for BB0324 was highly similar to the known structure of BamD, which is consistent with the prior finding that BB0324 contains tetratricopeptide repeat regions similar to other BamD orthologs. Consistent with BB0028 and BB0324 being BAM accessory lipoproteins, mutants lacking expression of each protein were found to exhibit altered membrane permeability and enhanced sensitivity to various antimicrobials. Additionally, BB0028 mutants also exhibited significantly impaired in vitro growth. Finally, immunoprecipitation experiments revealed that BB0028 and BB0324 each interact specifically and independently with BamA to form the BAM complex in B. burgdorferi.

Conclusions

Combined structural studies, functional assays, and co-immunoprecipitation experiments confirmed that BB0028 and BB0324 are the respective BamB and BamD orthologs in B. burgdorferi, and are important in membrane integrity and/or outer membrane protein localization. The borrelial BamB and BamD proteins both interact specifically and independently with BamA to form a tripartite BAM complex in B. burgdorferi. A working model has been developed to further analyze outer membrane biogenesis and outer membrane protein transport in this pathogenic spirochete.

【 授权许可】

   
2015 Dunn et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150613021709249.pdf 2662KB PDF download
Figure 8. 98KB Image download
Figure 7. 44KB Image download
Figure 6. 28KB Image download
Figure 5. 43KB Image download
Figure 4. 35KB Image download
Figure 10. 52KB Image download
Figure 2. 107KB Image download
Figure 1. 68KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 10.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Benach JL, Bosler EM, Hanrahan JP, Coleman JL, Habicht GS, Bast TF et al.. Spirochetes isolated from the blood of two patients with Lyme disease. N Engl J Med. 1983; 308:740-742.
  • [2]Steere AC, Grodzicki RL, Kornblatt AN, Craft JE, Barbour AG, Burgdorfer W et al.. The spirochetal etiology of Lyme disease. N Engl J Med. 1983; 308:733-740.
  • [3]van Dam AP, Kuiper H, Vos K, Widjojokusumo A, de Jongh BM, Spanjaard L et al.. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin Infect Dis. 1993; 17:708-717.
  • [4]Takayama K, Rothenberg RJ, Barbour AG. Absence of lipopolysaccharide in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun. 1987; 55:2311-2313.
  • [5]Howe TR, Mayer LW, Barbour AG. A single recombinant plasmid expressing two major outer surface proteins of the Lyme disease spirochete. Science. 1985; 227:645-646.
  • [6]Brandt ME, Riley BS, Radolf JD, Norgard MV. Immunogenic integral membrane proteins of Borrelia burgdorferi are lipoproteins. Infect Immun. 1990; 58:983-991.
  • [7]Fuchs R, Jauris S, Lottspeich F, Preac-Mursic V, Wilske B, Soutschek E. Molecular analysis and expression of a Borrelia burgdorferi gene encoding a 22 kDa protein (pC) in Escherichia coli. Mol Microbiol. 1992; 6:503-509.
  • [8]Norris SJ, Carter CJ, Howell JK, Barbour AG. Low-passage-associated proteins of Borrelia burgdorferi B31: characterization and molecular cloning of OspD, a surface-exposed, plasmid-encoded lipoprotein. Infect Immun. 1992; 60:4662-4672.
  • [9]Lam TT, Nguyen TPK, Montgomery RR, Kantor FS, Fikrig E, Flavell RA. Outer surface proteins E and F of Borrelia burgdorferi, the agent of Lyme disease. Infect Immun. 1994; 62:290-298.
  • [10]Guo B, Norris SJ, Rosenberg LC, Hook M. Adherence of Borrelia burgdorferi to the proteoglycan decorin. Infect Immun. 1995; 63:3467-3472.
  • [11]Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R et al.. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature. 1997; 390:580-586.
  • [12]Zhang JR, Hardham JM, Barbour AG, Norris SJ. Antigenic variation in Lyme disease Borreliae by promiscuous recombination of Vmp-like sequence cassettes. Cell. 1997; 89:275-285.
  • [13]Probert WS, Johnson BJB. Identification of a 47 kDa fibronectin-binding protein expressed by Borrelia burgdorferi isolate B31. Mol Microbiol. 1998; 30:1003-1015.
  • [14]Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, Rosa P et al.. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol. 2000; 35:490-516.
  • [15]Wallich R, Pattathu J, Kitiratschky V, Brenner C, Zipfel PF, Brade V et al.. Identification and functional characterization of complement regulator-acquiring surface protein 1 of the Lyme disease spirochetes Borrelia afzelii and Borrelia garinii. Infect Immun. 2005; 73:2351-2359.
  • [16]Bergstrom S, Zuckert WR. Structure, function and biogenesis of the Borrelia cell envelope. In: Borrelia: Molecular biology, host interaction and pathogenesis. Samuels DS, Radolf JD, editors. Caister Academic Press, Norfolk, UK; 2010: p.139-166.
  • [17]Revel AT, Blevins JS, Almazan C, Neil L, Kocan KM, de la FJ et al.. bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in its natural tick vector. Proc Natl Acad Sci U S A. 2005; 102:6972-6977.
  • [18]Kraiczy P, Hartmann K, Hellwage J, Skerka C, Kirschfink M, Brade V et al.. Immunological characterization of the complement regulator factor H-binding CRASP and Erp proteins of Borrelia burgdorferi. Int J Med Microbiol. 2004; 293 Suppl 37:152-157.
  • [19]Hellwage J, Meri T, Heikkila T, Alitalo A, Panelius J, Lahdenne P et al.. The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. J Biol Chem. 2001; 276:8427-8435.
  • [20]Hartmann K, Corvey C, Skerka C, Kirschfink M, Karas M, Brade V et al.. Functional characterization of BbCRASP-2, a distinct outer membrane protein of Borrelia burgdorferi that binds host complement regulators factor H and FHL-1. Mol Microbiol. 2006; 61:1220-1236.
  • [21]Hughes JL, Nolder CL, Nowalk AJ, Clifton DR, Howison RR, Schmit VL et al.. Borrelia burgdorferi surface-localized proteins expressed during persistent murine infection are conserved among diverse Borrelia spp. Infect Immun. 2008; 76:2498-2511.
  • [22]Brooks CS, Vuppala SR, Jett AM, Akins DR. Identification of Borrelia burgdorferi outer surface proteins. Infect Immun. 2006; 74:296-304.
  • [23]Kenedy MR, Lenhart TR, Akins DR. The role of Borrelia burgdorferi outer surface proteins. FEMS Immunol Med Microbiol. 2012; 66:1-19.
  • [24]Radolf JD, Bourell KW, Akins DR, Brusca JS, Norgard MV. Analysis of Borrelia burgdorferi membrane architecture by freeze-fracture electron microscopy. J Bacteriol. 1994; 176:21-31.
  • [25]Lenhart TR, Akins DR. Borrelia burgdorferi locus BB0795 encodes a BamA orthologue required for growth and efficient localization of outer membrane proteins. Mol Microbiol. 2010; 75:692-795.
  • [26]Antonara S, Chafel RM, LaFrance M, Coburn J. Borrelia burgdorferi adhesins identified using in vivo phage display. Mol Microbiol. 2007; 66:262-276.
  • [27]Bunikis I, Denker K, Ostberg Y, Andersen C, Benz R, Bergstrom S. An RND-type efflux system in Borrelia burgdorferi is involved in virulence and resistance to antimicrobial compounds. PLoS Pathog. 2008; 4:e1000009.
  • [28]Coburn J, Cugini C. Targeted mutation of the outer membrane protein P66 disrupts attachment of the Lyme disease agent, Borrelia burgdorferi, to integrin alphavbeta3. Proc Natl Acad Sci U S A. 2003; 100:7301-7306.
  • [29]Cugini C, Medrano M, Schwan TG, Coburn J. Regulation of expression of the Borrelia burgdorferi beta(3)-chain integrin ligand, P66, in ticks and in culture. Infect Immun. 2003; 71:1001-1007.
  • [30]Noppa L, Ostberg Y, Lavrinovicha M, Bergstrom S. P13, an integral membrane protein of Borrelia burgdorferi, is C-terminally processed and contains surface-exposed domains. Infect Immun. 2001; 69:3323-3334.
  • [31]Skare JT, Mirzabekov TA, Shang ES, Blanco DR, Erdjument-bromage H, Bunikis J et al.. The Oms66 (p66) protein is a Borrelia burgdorferi porin. Infect Immun. 1997; 65:3654-3661.
  • [32]Wood E, Tamborero S, Mingarro I, Esteve-Gassent MD. BB0172, a Borrelia burgdorferi outer membrane protein that binds integrin a3b1. J Bacteriol. 2013; 195:3320-3330.
  • [33]Russell TM, Johnson BJ. Lyme disease spirochaetes possess an aggrecan-binding protease with aggrecanase activity. Mol Microbiol. 2013; 90:228-240.
  • [34]Knowles TJ, Scott-Tucker A, Overduin M, Henderson IR. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat Rev Microbiol. 2009; 7:206-214.
  • [35]Albrecht R, Schutz M, Oberhettinger P, Faulstich M, Bermejo I, Rudel T et al.. Structure of BamA, an essential factor in outer membrane protein biogenesis. Acta Crystallogr D Biol Crystallogr. 2014; 70:1779-1789.
  • [36]Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H, Easley NC et al.. Structural insight into the biogenesis of beta-barrel membrane proteins. Nature. 2013; 501:385-390.
  • [37]Noinaj N, Kuszak AJ, Balusek C, Gumbart JC, Buchanan SK. Lateral opening and exit pore formation are required for BamA function. Structure. 2014; 22:1055-1062.
  • [38]Misra R, Stikeleather R, Gabriele R. In vivo roles of BamA, BamB and BamD in the biogenesis of BamA, a core protein of the b-barrel assembly machine of Escherichia coli. J Mol Biol. 2014; 427:1061-1074.
  • [39]Gessmann D, Chung YH, Danoff EJ, Plummer AM, Sandlin CW, Zaccai NR et al.. Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. Proc Natl Acad Sci U S A. 2014; 111:5878-5883.
  • [40]Volokhina EB, Grijpstra J, Beckers F, Lindh E, Robert V, Tommassen J et al.. Species-specificity of the BamA component of the bacterial outer membrane protein-assembly machinery. PLoS One. 2013; 8:e85799.
  • [41]Hagan CL, Westwood DB, Kahne D. Bam lipoproteins assemble BamA in vitro. Biochem. 2013; 52:6108-6113.
  • [42]Ricci DP, Hagan CL, Kahne D, Silhavy TJ. Activation of the Escherichia coli beta-barrel assembly machine (Bam) is required for essential components to interact properly with substrate. Proc Natl Acad Sci U S A. 2012; 109:3487-3491.
  • [43]Rigel NW, Ricci DP, Silhavy TJ. Conformation-specific labeling of BamA and suppressor analysis suggest a cyclic mechanism for beta-barrel assembly in Escherichia coli. Proc Natl Acad Sci U S A. 2013; 110:5151-5156.
  • [44]Kleinschmidt JH, den BT, Driessen AJ, Tamm LK. Outer membrane protein A of Escherichia coli inserts and folds into lipid bilayers by a concerted mechanism. Biochem. 1999; 38:5006-5016.
  • [45]Huysmans GH, Radford SE, Brockwell DJ, Baldwin SA. The N-terminal helix is a post-assembly clamp in the bacterial outer membrane protein PagP. J Mol Biol. 2007; 373:529-540.
  • [46]Burgess NK, Dao TP, Stanley AM, Fleming KG. Beta-barrel proteins that reside in the Escherichia coli outer membrane in vivo demonstrate varied folding behavior in vitro. J Biol Chem. 2008; 283:26748-26758.
  • [47]Stanley AM, Fleming KG. The process of folding proteins into membranes: challenges and progress. Arch Biochem Biophys. 2008; 469:46-66.
  • [48]Walther D, Rapaport D, Tommassen J. Biogenesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cell Mol Life Sci. 2009; 66:2789-2804.
  • [49]Webb CT, Heinz E, Lithgow T. Evolution of the beta-barrel assembly machinery. Trends Microbiol. 2012; 20:612-620.
  • [50]Ricci DP, Silhavy TJ. The Bam machine: A molecular cooper. Biochim Biophys Acta. 1818; 2012:1067-1084.
  • [51]Wu T, Malinverni J, Ruiz N, Kim S, Silhavy TJ, Kahne D. Identification of a Multicomponent Complex Required for Outer Membrane Biogenesis in Escherichia coli. Cell. 2005; 121:235-245.
  • [52]Jansen KB, Baker SL, Sousa MC. Crystal Structure of BamB Bound to a Periplasmic Domain Fragment of BamA, the Central Component of the beta-Barrel Assembly Machine. J Biol Chem. 2014; 290:2126-2136.
  • [53]Kim S, Malinverni JC, Sliz P, Silhavy TJ, Harrison SC, Kahne D. Structure and Function of an Essential Component of the Outer Membrane Protein Assembly Machine. Science. 2007; 317:961-964.
  • [54]Noinaj N, Fairman JW, Buchanan SK. The crystal structure of BamB suggests interactions with BamA and its role within the BAM complex. J Mol Biol. 2011; 407:248-260.
  • [55]Heuck A, Schleiffer A, Clausen T. Augmenting beta-augmentation: structural basis of how BamB binds BamA and may support folding of outer membrane proteins. J Mol Biol. 2011; 406:659-666.
  • [56]Reumann S, Davila-Aponte J, Keegstra K. The evolutionary origin of the protein-translocating channel of chloroplastic envelope membranes: Identification of a cyanobacterial homolog. Proc Natl Acad Sci U S A. 1999; 96:784-789.
  • [57]Gentle I, Gabriel K, Beech P, Waller R, Lithgow T. The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J Cell Biol. 2004; 164:19-24.
  • [58]Voulhoux R, Tommassen J. Omp85, an evolutionarily conserved bacterial protein involved in outer-membrane-protein assembly. Res Microbiol. 2004; 155:129-135.
  • [59]Genevrois S, Steeghs L, Roholl P, Letesson JJ, van der Ley P. The Omp85 protein of Neisseria meningitidis is required for lipid export to the outer membrane. EMBO J. 2003; 22:1780-1789.
  • [60]Voulhoux R, Bos MP, Geurtsen J, Mols M, Tommassen J. Role of a Highly Conserved Bacterial Protein in Outer Membrane Protein Assembly. Science. 2003; 299:262-265.
  • [61]Anwari K, Poggio S, Perry A, Gatsos X, Ramarathinam SH, Williamson NA et al.. A modular BAM complex in the outer membrane of the alpha-proteobacterium Caulobacter crescentus. PLoS One. 2010; 5:e8619.
  • [62]Gatsos X, Perry AJ, Anwari K, Dolezal P, Wolynec PP, Likic VA et al.. Protein secretion and outer membrane assembly in Alphaproteobacteria. FEMS Microbiol Rev. 2008; 32:995-1009.
  • [63]Volokhina EB, Beckers F, Tommassen J, Bos MP. The beta-barrel outer membrane protein assembly complex of Neisseria meningitidis. J Bacteriol. 2009; 191:7074-7085.
  • [64]Sklar JG, Wu T, Gronenberg LS, Malinverni JC, Kahne D, Silhavy TJ. Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli. Proc Natl Acad Sci. 2007; 104:6400-6405.
  • [65]Selkrig J, Mosbahi K, Webb CT, Belousoff MJ, Perry AJ, Wells TJ et al.. Discovery of an archetypal protein transport system in bacterial outer membranes. Nat Struct Mol Biol. 2012; 19:506-10. S1
  • [66]Fardini Y, Trotereau J, Bottreau E, Souchard C, Velge P, Virlogeux-Payant I. Investigation of the role of the BAM complex and SurA chaperone in outer-membrane protein biogenesis and type III secretion system expression in Salmonella. Microbiology. 2009; 155:1613-1622.
  • [67]Lenhart TR, Kenedy MR, Yang X, Pal U, Akins DR. BB0324 and BB0028 are constituents of the Borrelia burgdorferi beta-barrel assembly machine (BAM) complex. BMC Microbiol. 2012; 12:60. BioMed Central Full Text
  • [68]Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008; 9:40. BioMed Central Full Text
  • [69]Roy A, Yang J, Zhang Y. COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res. 2012; 40:W471-W477.
  • [70]Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010; 5:725-738.
  • [71]Clantin B, Delattre AS, Rucktooa P, Saint N, Meli AC, Locht C et al.. Structure of the Membrane Protein FhaC: A Member of the Omp85-TpsB Transporter Superfamily. Science. 2007; 317:957-961.
  • [72]Browning DF, Matthews SA, Rossiter AE, Sevastsyanovich YR, Jeeves M, Mason JL et al.. Mutational and topological analysis of the Escherichia coli BamA protein. PLoS One. 2013; 8:e84512.
  • [73]Leonard-Rivera M, Misra R. Conserved residues of the putative L6 loop of Escherichia coli BamA play a critical role in the assembly of β-barrel outer membrane proteins, including that of BamA itself. J Bacteriol. 2012; 194:4662-4668.
  • [74]Blatch GL, Lassle M. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays. 1999; 21:932-939.
  • [75]Dong C, Hou HF, Yang X, Shen YQ, Dong YH. Structure of Escherichia coli BamD and its functional implications in outer membrane protein assembly. Acta Crystallogr D Biol Crystallogr. 2012; 68:95-101.
  • [76]Sandoval CM, Baker SL, Jansen K, Metzner SI, Sousa MC. Crystal structure of BamD: an essential component of the beta-Barrel assembly machinery of gram-negative bacteria. J Mol Biol. 2011; 409:348-357.
  • [77]Albrecht R, Zeth K. Structural basis of outer membrane protein biogenesis in bacteria. J Biol Chem. 2011; 286:27792-27803.
  • [78]Onufryk C, Crouch ML, Fang FC, Gross CA. Characterization of Six Lipoproteins in the sigmaE Regulon. The Journal of Bacteriology. 2005; 187:4552-4561.
  • [79]Ruiz N, Falcone B, Kahne D, Silhavy TJ. Chemical conditionality: a genetic strategy to probe organelle assembly. Cell. 2005; 121:307-317.
  • [80]Kim KH, Paetzel M. Crystal structure of Escherichia coli BamB, a lipoprotein component of the beta-barrel assembly machinery complex. J Mol Biol. 2011; 406:667-678.
  • [81]Malinverni JC, Werner J, Kim S, Sklar JG, Kahne D, Misra R et al.. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol Microbiol. 2006; 61:151-164.
  • [82]Nikaido H, Normark S. Sensitivity of Escherichia coli to various beta-lactams is determined by the interplay of outer membrane permeability and degradation by periplasmic beta-lactamases: a quantitative predictive treatment. Mol Microbiol. 1987; 1:29-36.
  • [83]Leive L, Telesetsky S, Coleman WG, Carr D. Tetracyclines of various hydrophobicities as a probe for permeability of Escherichia coli outer membranes. Antimicrob Agents Chemother. 1984; 25:539-544.
  • [84]Eggers CH, Caimano MJ, Clawson ML, Miller WG, Samuels DS, Radolf JD. Identification of loci critical for replication and compatibility of a Borrelia burgdorferi cp32 plasmid and use of a cp32-based shuttle vector for the expression of fluorescent reporters in the Lyme disease spirochaete. Mol Microbiol. 2002; 43:281-295.
  • [85]Gilbert MA, Morton EA, Bundle SF, Samuels DS. Artificial regulation of ospC expression in Borrelia burgdorferi. Mol Microbiol. 2007; 63:1259-1273.
  • [86]Kawabata H, Norris SJ, Watanabe H. BBE02 disruption mutants of Borrelia burgdorferi B31 have a highly transformable, infectious phenotype. Infect Immun. 2004; 72:7147-7154.
  • [87]Stewart P, Thalken R, Bono J, Rosa P. Isolation of a circular plasmid region sufficient for autonomous replication and transformation of infectious Borrelia burgdorferi. Mol Microbiol. 2001; 39:714-721.
  • [88]Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997; 18:2714-2723.
  • [89]Luthra A, Zhu G, Desrosiers DC, Eggers CH, Mulay V, Anand A et al.. The transition from closed to open conformation of Treponema pallidum outer membrane-associated lipoprotein TP0453 involves membrane sensing and integration by two amphipathic helices. J Biol Chem. 2011; 286:41656-41668.
  • [90]Kenedy MR, Luthra A, Anand A, Dunn JP, Radolf JD, Akins DR. Structural modeling and physicochemical characterization provide evidence that P66 forms a b-barrel in the Borrelia burgdorferi outer membrane. J Bacteriol. 2014; 196:859-872.
  • [91]Frank KL, Bundle SF, Kresge ME, Eggers CH, Samuels DS. aadA confers streptomycin resistance in Borrelia burgdorferi. J Bacteriol. 2003; 185:6723-6727.
  • [92]Elias AF, Stewart PE, Grimm D, Caimano MJ, Eggers CH, Tilly K et al.. Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background. Infect Immun. 2002; 70:2139-2150.
  • [93]Brooks CS, Vuppala SR, Jett AM, Alitalo A, Meri S, Akins DR. Complement regulator-acquiring surface protein 1 imparts resistance to human serum in Borrelia burgdorferi. J Immunol. 2005; 175:3299-3308.
  • [94]Hunfeld KP, Kraiczy P, Wichelhaus TA, Schafer V, Brade V. New colorimetric microdilution method for in vitro susceptibility testing of Borrelia burgdorferi against antimicrobial substances. Eur J Clin Microbiol Infect Dis. 2000; 19:27-32.
  • [95]Skare JT, Shang ES, Foley DM, Blanco DR, Champion CI, Mirzabekov T et al.. Virulent strain associated outer membrane proteins of Borrelia burgdorferi. J Clin Invest. 1995; 96:2380-2392.
  • [96]Mulay V, Caimano M, Liveris D, Desrosiers DC, Radolf JD, Schwartz I. Borrelia burgdorferi BBA74, a Periplasmic Protein Associated with the Outer Membrane, Lacks Porin-Like Properties. The Journal of Bacteriology. 2007; 189:2063-2068.
  • [97]Kenedy MR, Vuppala SR, Siegel C, Kraiczy P, Akins DR. CspA-mediated binding of human factor H inhibits complement deposition and confers serum resistance in Borrelia burgdorferi. Infect Immun. 2009; 77:2773-2782.
  • [98]Nowalk AJ, Gilmore RD, Carroll JA. Serologic proteome analysis of Borrelia burgdorferi membrane-associated proteins. Infect Immun. 2006; 74:3864-3873.
  文献评价指标  
  下载次数:18次 浏览次数:43次