期刊论文详细信息
BMC Genomics
Transcriptional profiles of Burkholderia pseudomallei reveal the direct and indirect roles of Sigma E under oxidative stress conditions
Sunee Korbsrisate4  Patrick Tan2  Richard W Titball5  Paiboon Vattanaviboon3  Claudia M Hemsley5  Wen Fong Ooi1  Niramol Juntawieng4  Catherine Ong2  Siroj Jitprasutwit4 
[1] Genome Institute of Singapore, Singapore 138672, Singapore;DSO National Laboratories, Singapore 117510, Singapore;Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand;Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;Bioscience, Geoffrey Pope Building, University of Exeter, Devon EX4 4QD, UK
关键词: Oxidative stress;    SpeG;    Sigma E;    Transcription profile;    B. pseudomallei;   
Others  :  1140553
DOI  :  10.1186/1471-2164-15-787
 received in 2014-03-29, accepted in 2014-09-08,  发布年份 2014
PDF
【 摘 要 】

Background

Burkholderia pseudomallei, the causative agent of melioidosis, is a Gram-negative bacterium widely distributed in soil and water in endemic areas. This soil saprophyte can survive harsh environmental conditions, even in soils where herbicides (containing superoxide generators) are abundant. Sigma factor E (σE) is a key regulator of extra-cytoplasmic stress response in Gram-negative bacteria. In this study, we identified the B. pseudomallei σE regulon and characterized the indirect role that σE plays in the regulation of spermidine, contributing to the successful survival of B. pseudomallei in stressful environments.

Results

Changes in the global transcriptional profiles of B. pseudomallei wild type and σE mutant under physiological and oxidative stress (hydrogen peroxide) conditions were determined. We identified 307 up-regulated genes under oxidative stress condition. Comparison of the transcriptional profiles of B. pseudomallei wild type and σE mutant under control or oxidative stress conditions identified 85 oxidative-responsive genes regulated by σE, including genes involved in cell membrane repair, maintenance of protein folding and oxidative stress response and potential virulence factors such as a type VI secretion system (T6SS). Importantly, we identified that the speG gene, encoding spermidine-acetyltransferase, is a novel member of the B. pseudomallei σE regulon. The expression of speG was regulated by σE, implying that σE plays an indirect role in the regulation of physiological level of spermidine to protect the bacteria during oxidative stress.

Conclusion

This study identified B. pseudomallei genes directly regulated by σE in response to oxidative stress and revealed the indirect role of σE in the regulation of the polyamine spermidine (via regulation of speG) for bacterial cell protection during oxidative stress. This study provides new insights into the regulatory mechanisms by which σE contributes to the survival of B. pseudomallei under stressful conditions.

【 授权许可】

   
2014 Jitprasutwit et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325043033487.pdf 870KB PDF download
Figure 3. 29KB Image download
Figure 2. 31KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Abraham KA: Studies on DNA-dependent RNA polymerase from Escherichia coli. 1. The mechanism of polyamine induced stimulation of enzyme activity. Eur J Biochem 1968, 5(1):143-146.
  • [2]Wuthiekanun V, Mayxay M, Chierakul W, Phetsouvanh R, Cheng AC, White NJ, Day NP, Peacock SJ: Detection of Burkholderia pseudomallei in soil within the Lao People's Democratic Republic. J Clin Microbiol 2005, 43(2):923-924.
  • [3]Wiersinga WJ, van der Poll T, White NJ, Day NP, Peacock SJ: Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat Rev Microbiol 2006, 4(4):272-282.
  • [4]Kanthawong S, Nazmi K, Wongratanacheewin S, Bolscher JG, Wuthiekanun V, Taweechaisupapong S: In vitro susceptibility of Burkholderia pseudomallei to antimicrobial peptides. Int J Antimicrob Agents 2009, 34(4):309-314.
  • [5]Wuthiekanun V, Smith MD, White NJ: Survival of Burkholderia pseudomallei in the absence of nutrients. Trans R Soc Trop Med Hyg 1995, 89(5):491.
  • [6]De Las PA, Connolly L, Gross CA: SigmaE is an essential sigma factor in Escherichia coli. J Bacteriol 1997, 179(21):6862-6864.
  • [7]Hayden JD, Ades SE: The extracytoplasmic stress factor, sigmaE, is required to maintain cell envelope integrity in Escherichia coli. PLoS One 2008, 3(2):e1573.
  • [8]Brown RN, Gulig PA: Roles of RseB, sigmaE, and DegP in virulence and phase variation of colony morphotype of Vibrio vulnificus. Infect Immun 2009, 77(9):3768-3781.
  • [9]Humphreys S, Stevenson A, Bacon A, Weinhardt AB, Roberts M: The alternative sigma factor, sigmaE, is critically important for the virulence of Salmonella typhimurium. Infect Immun 1999, 67(4):1560-1568.
  • [10]Testerman TL, Vazquez-Torres A, Xu Y, Jones-Carson J, Libby SJ, Fang FC: The alternative sigma factor sigmaE controls antioxidant defences required for Salmonella virulence and stationary-phase survival. Mol Microbiol 2002, 43(3):771-782.
  • [11]Skovierova H, Rowley G, Rezuchova B, Homerova D, Lewis C, Roberts M, Kormanec J: Identification of the sigmaE regulon of Salmonella enterica serovar Typhimurium. Microbiology 2006, 152(Pt 5):1347-1359.
  • [12]Lewis C, Skovierova H, Rowley G, Rezuchova B, Homerova D, Stevenson A, Spencer J, Farn J, Kormanec J, Roberts M: Salmonella enterica Serovar Typhimurium HtrA: regulation of expression and role of the chaperone and protease activities during infection. Microbiology 2009, 155(Pt 3):873-881.
  • [13]Korbsrisate S, Vanaporn M, Kerdsuk P, Kespichayawattana W, Vattanaviboon P, Kiatpapan P, Lertmemongkolchai G: The Burkholderia pseudomallei RpoE (AlgU) operon is involved in environmental stress tolerance and biofilm formation. FEMS Microbiol Lett 2005, 252(2):243-249.
  • [14]Thongboonkerd V, Vanaporn M, Songtawee N, Kanlaya R, Sinchaikul S, Chen ST, Easton A, Chu K, Bancroft GJ, Korbsrisate S: Altered proteome in Burkholderia pseudomallei rpoE operon knockout mutant: insights into mechanisms of rpoE operon in stress tolerance, survival, and virulence. J Proteome Res 2007, 6(4):1334-1341.
  • [15]Figge RM, Divakaruni AV, Gober JW: MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 2004, 51(5):1321-1332.
  • [16]Doi M, Wachi M, Ishino F, Tomioka S, Ito M, Sakagami Y, Suzuki A, Matsuhashi M: Determinations of the DNA sequence of the mreB gene and of the gene products of the mre region that function in formation of the rod shape of Escherichia coli cells. J Bacteriol 1988, 170(10):4619-4624.
  • [17]Gaballah A, Kloeckner A, Otten C, Sahl HG, Henrichfreise B: Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae. PLoS One 2011, 6(10):e25129.
  • [18]Pantopoulos K, Hentze MW: Rapid responses to oxidative stress mediated by iron regulatory protein. EMBO J 1995, 14(12):2917-2924.
  • [19]Cases I, Ussery DW, de Lorenzo V: The sigma54 regulon (sigmulon) of Pseudomonas putida. Environ Microbiol 2003, 5(12):1281-1293.
  • [20]Studholme DJ, Wigneshwereraraj SR, Gallegos MT, Buck M: Functionality of purified sigma(N) (sigma(54)) and a NifA-like protein from the hyperthermophile Aquifex aeolicus. J Bacteriol 2000, 182(6):1616-1623.
  • [21]Dowling AJ, Wilkinson PA, Holden MT, Quail MA, Bentley SD, Reger J, Waterfield NR, Titball RW, Ffrench-Constant RH: Genome-wide analysis reveals loci encoding anti-macrophage factors in the human pathogen Burkholderia pseudomallei K96243. PLoS One 2010, 5(12):e15693.
  • [22]Loprasert S, Whangsuk W, Sallabhan R, Mongkolsuk S: Regulation of the katG-dpsA operon and the importance of KatG in survival of Burkholderia pseudomallei exposed to oxidative stress. FEBS Lett 2003, 542(1–3):17-21.
  • [23]Loprasert S, Sallabhan R, Whangsuk W, Mongkolsuk S: Compensatory increase in ahpC gene expression and its role in protecting Burkholderia pseudomallei against reactive nitrogen intermediates. Arch Microbiol 2003, 180(6):498-502.
  • [24]He X, Thornton J, Carmicle-Davis S, McDaniel LS: Tex, a putative transcriptional accessory factor, is involved in pathogen fitness in Streptococcus pneumoniae. Microb Pathog 2006, 41(6):199-206.
  • [25]Nordlund P, Reichard P: Ribonucleotide reductases. Annu Rev Biochem 2006, 75:681-706.
  • [26]Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL: Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 1997, 61(4):393-410.
  • [27]Vickery LE, Cupp-Vickery JR: Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron-sulfur protein maturation. Crit Rev Biochem Mol Biol 2007, 42(2):95-111.
  • [28]Wandersman C, Delepelaire P: Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 2004, 58:611-647.
  • [29]Llorca O, Galan A, Carrascosa JL, Muga A, Valpuesta JM: GroEL under heat-shock. Switching from a folding to a storing function. J Biol Chem 1998, 273(49):32587-32594.
  • [30]Sztukowska M, Bugno M, Potempa J, Travis J, Kurtz DM Jr: Role of rubrerythrin in the oxidative stress response of Porphyromonas gingivalis. Mol Microbiol 2002, 44(2):479-488.
  • [31]Shalom G, Shaw JG, Thomas MS: In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology 2007, 153(Pt 8):2689-2699.
  • [32]Das S, Chakrabortty A, Banerjee R, Roychoudhury S, Chaudhuri K: Comparison of global transcription responses allows identification of Vibrio cholerae genes differentially expressed following infection. FEMS Microbiol Lett 2000, 190(1):87-91.
  • [33]Potvin E, Lehoux DE, Kukavica-Ibrulj I, Richard KL, Sanschagrin F, Lau GW, Levesque RC: In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol 2003, 5(12):1294-1308.
  • [34]Samuel Raj V, Full C, Yoshida M, Sakata K, Kashiwagi K, Ishihama A, Igarashi K: Decrease in cell viability in an RMF, sigma(38), and OmpC triple mutant of Escherichia coli. Biochem Biophys Res Commun 2002, 299(2):252-257.
  • [35]Terui Y, Higashi K, Tabei Y, Tomitori H, Yamamoto K, Ishihama A, Igarashi K, Kashiwagi K: Enhancement of the synthesis of RpoE and StpA by polyamines at the level of translation in Escherichia coli under heat shock conditions. J Bacteriol 2009, 191(17):5348-5357.
  • [36]Shah P, Swiatlo E: A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol 2008, 68(1):4-16.
  • [37]Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA Jr: The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci U S A 1998, 95(19):11140-11145.
  • [38]Cohen SS: A guide to the polyamines. New York; Oxford: Oxford University Press; 1998.
  • [39]He Y, Kashiwagi K, Fukuchi J, Terao K, Shirahata A, Igarashi K: Correlation between the inhibition of cell growth by accumulated polyamines and the decrease of magnesium and ATP. Eur J Biochem 1993, 217(1):89-96.
  • [40]Barbagallo M, Di Martino ML, Marcocci L, Pietrangeli P, De Carolis E, Casalino M, Colonna B, Prosseda G: A new piece of the Shigella pathogenicity puzzle: spermidine accumulation by silencing of the speG gene. PLoS One 2011, 6(11):e27226.
  • [41]Fukuchi J, Kashiwagi K, Yamagishi M, Ishihama A, Igarashi K: Decrease in cell viability due to the accumulation of spermidine in spermidine acetyltransferase-deficient mutant of Escherichia coli. J Biol Chem 1995, 270(32):18831-18835.
  • [42]Sun GW, Chen Y, Liu Y, Tan GY, Ong C, Tan P, Gan YH: Identification of a regulatory cascade controlling Type III Secretion System 3 gene expression in Burkholderia pseudomallei. Mol Microbiol 2010, 76(3):677-689.
  • [43]Ong C, Ooi CH, Wang D, Chong H, Ng KC, Rodrigues F, Lee MA, Tan P: Patterns of large-scale genomic variation in virulent and avirulent Burkholderia species. Genome Res 2004, 14(11):2295-2307.
  • [44]Ooi WF, Ong C, Nandi T, Kreisberg JF, Chua HH, Sun G, Chen Y, Mueller C, Conejero L, Eshaghi M, Ang RM, Liu J, Sobral BW, Korsrisate S, Gen YH, Titball RW, Bancroft GJ, Valade E, Tan P: The condition-dependent transcriptional landscape of Burkholderia pseudomallei. PLoS Genet 2013, 9(9):e1003795.
  文献评价指标  
  下载次数:34次 浏览次数:10次