BMC Musculoskeletal Disorders | |
Cathepsin K inhibitors increase distal femoral bone mineral density in rapidly growing rabbits | |
Le T Duong3  Donald B Kimmel4  Sonia Levesque1  Renata M Oballa2  Brenda L Pennypacker3  | |
[1] AniDis, 4850 chemin Bois Franc, Suite 200, St-Laurent, H4S 1A7, Province of Quebec, Canada;Inception Sciences Canada Inc., Suite 210, 887 Great Northern Way, V5T 4T5, Vancouver, BC Canada;Merck Research Laboratories, Merck & Co., Inc., P.O. Box 100, Whitehouse Station, NJ 08889, USA;Osteoporosis Research Center, Creighton University, 601 North 30th Street, Omaha, NE 68131, USA | |
关键词: Postmenopausal osteoporosis; Rabbit Schenk assay; DXA; Antiresorptives; Osteoclast; Cathepsin K inhibitor; Odanacatib; | |
Others : 1129083 DOI : 10.1186/1471-2474-14-344 |
|
received in 2013-07-12, accepted in 2013-11-14, 发布年份 2013 | |
【 摘 要 】
Background
Selective and reversible inhibitors of human Cathepsin K (CatK), including odanacatib (ODN), have been developed as potential therapeutics for the treatment of osteoporosis. Inhibitors of human CatK show significantly less potency for the rodent enzymes compared with that for the human or rabbit enzymes; thus the Schenk model in growing rabbit was developed as a screening assay for the in vivo activity of CatK inhibitors in blocking bone resorption.
Methods
In this study, the efficacy of the selective inhibitors L-833905, L-006235, L-873724, and L-1037536 (ODN) of human CatK in the rapidly growing rabbit ‘Schenk’ model (age seven weeks) was compared to vehicle, using the bisphosphonate, alendronate (ALN), as a positive control, to assess inhibition of bone resorption. An enzyme inhibition assay (EIA) and an in vitro bone resorption assay using rabbit osteoclasts on bovine cortical bone slices were performed to evaluate the potency of these CatK inhibitors. Bone mineral density of the distal femur (DFBMD) was measured after ten days of treatment using ex vivo DXA densitometry.
Results
Results of the EIA using rabbit CatK and the rabbit bone resorption assay showed that three of the four compounds (L-006235, L-873724, and ODN) had similar potencies in the reduction of collagen degradation. L-833905 appeared to be a weaker inhibitor of CatK. Taking into account the respective in vitro potencies and pharmacokinetic profiles via oral administration, the efficacy of these four CatK inhibitors was demonstrated in a dose-related manner in the growing rabbit. Significant increases in DFBMD in animals dosed with the CatK inhibitors compared to vehicle were seen.
Conclusions
Efficacy of the CatK inhibitors in the Schenk rabbit correlated well with that in the in vitro rabbit bone resorption assay and in the ovariectomized rabbit model as previously published. Hence, these studies validated the rabbit Schenk assay as a rapid and reliable in vivo model for prioritizing human CatK inhibitors as potential therapeutic agents.
【 授权许可】
2013 Pennypacker et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150225202947627.pdf | 2863KB | download | |
Figure 3. | 21KB | Image | download |
Figure 2. | 21KB | Image | download |
Figure 1. | 189KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Brömme D, Okamoto K: Human cathepsin O2, a novel cysteine protease highly expressed in osteoclastomas and ovary molecular cloning, sequencing and tissue distribution. Biol Chem Hoppe Seyler 1995, 376:379-384.
- [2]Kafienah W, Brömme D, Buttle DJ, Croucher LJ, Hollander AP: Human cathepsin K cleaves native type I and II collagens at the N-terminal end of the triple helix. Biochem J 1998, 331(Pt 3):727-732.
- [3]Gelb BD, Shi GP, Chapman HA, Desnick RJ: Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 1996, 273:1236-1238.
- [4]Ho N, Punturieri A, Wilkin D, Szabo J, Johnson M, Whaley J, Davis J, Clark A, Weiss S, Francomano C: Mutations of CTSK result in pycnodysostosis via a reduction in cathepsin K protein. J Bone Miner Res 1999, 14:1649-1653.
- [5]Johnson MR, Polymeropoulos MH, Vos HL, De Luna RI O, Francomano CA: A nonsense mutation in the cathepsin K gene observed in a family with pycnodysostosis. Genome Res 1996, 6:1050-1055.
- [6]Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, Von Figura K: Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 1998, 95:13453-13458.
- [7]Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, Bertoncello I, Drake F, Zavarselk S, Tellis I, Hertzog P, Debouck C, Kola I: Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 1999, 14:1654-1663.
- [8]Pennypacker B, Shea M, Liu Q, Masarachia P, Saftig P, Rodan S, Rodan G, Kimmel D: Bone density, strength, and formation in adult cathepsin K (−/−) mice. Bone 2009, 44:199-207.
- [9]Kiviranta R, Morko J, Uusitalo H, Aro HT, Vuorio E, Rantakokko J: Accelerated turnover of metaphyseal trabecular bone in mice overexpressing cathepsin K. J Bone Miner Res 2001, 16:1444-1452.
- [10]Boonen S, Rosenberg E, Claessens F, Vanderschueren D, Papapoulos S: Inhibition of cathepsin K for treatment of osteoporosis. Curr Osteoporos Rep 2012, 10:73-79.
- [11]Thompson DD, Simmons HA, Pirie CM, Ke HZ: FDA Guidelines and animal models for osteoporosis. Bone 1995, 17:125S-133S.
- [12]Stroup GB, Lark MW, Veber DF, Bhattacharyya A, Blake S, Dare LC, Erhard KF, Hoffman SJ, James IE, Marquis RW, Ru Y, Vasko-Moser JA, Smith BR, Tomaszek T, Gowen M: Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate. J Bone Miner Res 2001, 16:1739-1746.
- [13]Falgueyret JP, Desmarais S, Oballa R, Black WC, Cromlish W, Khougaz K, Lamontagne S, Massé F, Riendeau D, Toulmond S, Percival MD: Lysosomotropism of basic cathepsin K inhibitors contributes to increased cellular potencies against off-target cathepsins and reduced functional selectivity. J Med Chem 2005, 48:7535-7543.
- [14]Desmarais S, Masse F, Percival MD: Pharmacological inhibitors to identify roles of cathepsin K in cell-based studies: a comparison of available tools. Biol Chem 2009, 390:941-948.
- [15]Pennypacker BL, Duong Le T, Cusick TE, Masarachia PJ, Gentile MA, Gauthier JY, Black WC, Scott BB, Samadfam R, Smith SY, Kimmel DB: Cathepsin K inhibitors prevent bone loss in estrogen-deficient rabbits. J Bone Miner Res 2011, 26:252-262.
- [16]Schenk R, Merz WA, Muhlbauer R, Russell RG, Fleisch H: Effect of ethane-1-hydroxy-1,1-diphosphonate (EHDP) and dichloromethylene diphosphonate (Cl 2 MDP) on the calcification and resorption of cartilage and bone in the tibial epiphysis and metaphysis of rats. Calcif Tissue Res 1973, 11:196-214.
- [17]Miller SC, Jee WS: Ethane-1-hydroxy-1, 1-diphosphonate (EHDP). Effects on growth and modeling of the rat tibia. Calcif Tissue Res 1975, 18:215-231.
- [18]Schenk R, Eggli P, Fleisch H, Rosini S: Quantitative morphometric evaluation of the inhibitory activity of new aminobisphosphonates on bone resorption in the rat. Calcif Tissue Int 1986, 38:342-349.
- [19]Spadaro JA, Damron TA, Horton JA, Margulies BS, Murray GM, Clemente DA, Strauss JA: Density and structural changes in the bone of growing rats after weekly alendronate administration with and without a methotrexate challenge. J Orthop Res 2006, 24:936-944.
- [20]Kuhn JL, DeLacey JH, Leenellett EE: Relationship between bone growth rate and hypertrophic chondrocyte volume in New Zealand white rabbits of varying ages. J Orthop Res 1996, 14:706-711.
- [21]Lerner AL, Kuhn JL: Characterization of regional and age-related variations in the growth of the rabbit distal femur. J Orthop Res 1997, 15:353-361.
- [22]Falgueyret JP, Black WC, Cromlish W, Desmarais S, Lamontagne S, Mellon C, Riendeau D, Rodan S, Tawa P, Wesolowski G, Bass KE, Venkatraman S, Percival MD: An activity-based probe for the determination of cysteine cathepsin protease activities in whole cells. Anal Biochem 2004, 335:218-227.
- [23]Falgueyret JP, Oballa RM, Okamoto O, Wesolowski G, Aubin Y, Rydzewski RM, Prasit P, Riendeau D, Rodan SB, Percival MD: Novel, nonpeptidic cyanamides as potent and reversible inhibitors of human cathepsins K and L. J Med Chem 2001, 44:94-104.
- [24]Robichaud J, Oballa R, Prasit P, Falgueyret JP, Percival MD, Wesolowski G, Rodan SB, Kimmel D, Johnson C, Bryant C, Venkatraman S, Setti E, Mendonca R, Palmer JT: A novel class of nonpeptidic biaryl inhibitors of human cathepsin K. J Med Chem 2003, 46:3709-3727.
- [25]Gauthier JY, Chauret N, Cromlish W, Desmarais S, Duong Le T, Falgueyret JP, Kimmel DB, Lamontagne S, Léger S, LeRiche T, Li CS, Massé F, McKay DJ, Nicoll-Griffith DA, Oballa RM, Palmer JT, Percival MD, Riendeau D, Robichaud J, Rodan GA, Rodan SB, Seto C, Therien M, Truong VL, Venuti MC, Wesolowski G, Young RN, Zamboni R, Black WC: The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett 2008, 18:923-928.
- [26]Leung P, Pickarski M, Zhuo Y, Masarachia PJ, Duong LT: The effects of the cathepsin K inhibitor odanacatib on osteoclastic bone resorption and vesicular trafficking. Bone 2011, 49:623-635.
- [27]Kumar S, Dare L, Vasko-Moser JA, James IE, Blake SM, Rickard DJ, Hwang SM, Tomaszek T, Yamashita DS, Marquis RW, Oh H, Jeong JU, Veber DF, Gowen M, Lark MW, Stroup G: A highly potent inhibitor of cathepsin K (relacatib) reduces biomarkers of bone resorption both in vitro and in an acute model of elevated bone turnover in vivo in monkeys. Bone 2007, 40:122-131.
- [28]Ochi Y, Yamada H, Mori H, Nakanishi Y, Nishikawa S, Kayasuga R, Kawada N, Kunishige A, Hashimoto Y, Tanaka M, Sugitani M, Kawabata K: Effects of ONO-5334, a novel orally-active inhibitor of cathepsin K, on bone metabolism. Bone 2011, 49:1351-1356.
- [29]Stroup GB, Hoffman SJ, Vasko-Moser JA, Lechowska BA, Jenkins EL, Dare LC, Gowen M: Changes in bone turnover following gonadotropin-releasing hormone (GnRH) agonist administration and estrogen treatment in cynomolgus monkeys: a short-term model for evaluation of antiresorptive therapy. Bone 2001, 28:532-537.
- [30]Sietsema WK, Ebetino FH, Salvagno AM, Bevan JA: Antiresorptive dose–response relationships across three generations of bisphosphonates. Drugs Exp Clin Res 1989, 15:389-396.
- [31]Muhlbauer RC, Bauss F, Schenk R, Janner M, Bosies E, Strein K, Fleisch H: BM 21.0955, a potent new bisphosphonate to inhibit bone resorption. J Bone Miner Res 1991, 6:1003-1011.
- [32]Masarachia PJ, Pennypacker BL, Pickarski M, Scott KR, Wesolowski GA, Smith SY, Samadfam R, Goetzmann JE, Scott BB, Kimmel DB, Duong IT: Odanacatib reduces bone turnover and increases bone mass in the lumbar spine of skeletally mature ovariectomized rhesus monkeys. J Bone Miner Res 2012, 27:509-523.
- [33]Cusick T, Chen CM, Pennypacker BL, Pickarski M, Kimmel DB, Scott BB, Duong IT: Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey. J Bone Miner Res 2012, 27:524-537.