| BMC Genomics | |
| Cronobacter, the emergent bacterial pathogen Enterobacter sakazakii comes of age; MLST and whole genome sequence analysis | |
| Keith A Jolley2  Benjamin Dickins1  Stephen J Forsythe1  | |
| [1] School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;Department of Zoology, University of Oxford, Oxford OX1 3PS, UK | |
| 关键词: Genomic analysis; MLST; Cronobacter; Emergent bacterial pathogen; | |
| Others : 1127221 DOI : 10.1186/1471-2164-15-1121 |
|
| received in 2014-07-03, accepted in 2014-12-11, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Following the association of Cronobacter spp. to several publicized fatal outbreaks in neonatal intensive care units of meningitis and necrotising enterocolitis, the World Health Organization (WHO) in 2004 requested the establishment of a molecular typing scheme to enable the international control of the organism. This paper presents the application of Next Generation Sequencing (NGS) to Cronobacter which has led to the establishment of the Cronobacter PubMLST genome and sequence definition database (http://pubmlst.org/cronobacter/ webcite) containing over 1000 isolates with metadata along with the recognition of specific clonal lineages linked to neonatal meningitis and adult infections
Results
Whole genome sequencing and multilocus sequence typing (MLST) has supports the formal recognition of the genus Cronobacter composed of seven species to replace the former single species Enterobacter sakazakii. Applying the 7-loci MLST scheme to 1007 strains revealed 298 definable sequence types, yet only C. sakazakii clonal complex 4 (CC4) was principally associated with neonatal meningitis. This clonal lineage has been confirmed using ribosomal-MLST (51-loci) and whole genome-MLST (1865 loci) to analyse 107 whole genomes via the Cronobacter PubMLST database. This database has enabled the retrospective analysis of historic cases and outbreaks following re-identification of those strains.
Conclusions
The Cronobacter PubMLST database offers a central, open access, reliable sequence-based repository for researchers. It has the capacity to create new analysis schemes ‘on the fly’, and to integrate metadata (source, geographic distribution, clinical presentation). It is also expandable and adaptable to changes in taxonomy, and able to support the development of reliable detection methods of use to industry and regulatory authorities. Therefore it meets the WHO (2004) request for the establishment of a typing scheme for this emergent bacterial pathogen. Whole genome sequencing has additionally shown a range of potential virulence and environmental fitness traits which may account for the association of C. sakazakii CC4 pathogenicity, and propensity for neonatal CNS.
【 授权许可】
2014 Forsythe et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150220055214108.pdf | 2162KB | ||
| Figure 5. | 35KB | Image | |
| Figure 4. | 32KB | Image | |
| Figure 3. | 102KB | Image | |
| Figure 2. | 97KB | Image | |
| Figure 1. | 49KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Maiden MC, van Rensburg MJ, Bray JE, Earle SG, Ford SA, Jolley KA, McCarthy ND: MLST revisited: The gene-by-gene approach to bacterial genomics. Nat Rev Microbiol 2013, 11:728-736.
- [2]Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FH, Wimalarathna H, Harrison OB, Sheppard SK, Cody AJ, Maiden MCJ: Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiol 2012, 158:1005-1015.
- [3]Jolley KA, Maiden MC: Automated extraction of typing information for bacterial pathogens from whole genome sequence data: Neisseria meningitidis as an exemplar. Euro Surveill 2013, 18:pii=20379.
- [4]Sheppard SK, Jolley KA, Maiden MJC: A gene-by-gene approach to bacterial population genomics: whole genome MLST of Campylobacter. Genes 2012, 3:261-277.
- [5]Pérez-Losada M, Cabezas P, Castro-Nallar E, Crandall KA: Pathogen typing in the genomics era: MLST and the future of molecular epidemiology. Infect Gen Evol 2013, 16:38-53.
- [6]Leopold SR, Goering RV, Witten A, Harmsen D, Mellmann A: Bacterial whole-genome sequencing revisited: portable, scalable, and standardized analysis for typing and detection of virulence and antibiotic resistance genes. J Clin Microbiol 2014, 52:2365-2370.
- [7]van Acker J, de Smet F, Muyldermans G, Bougatef A, Naessens A, Lauwers S: Outbreak of necrotizing enterocolitis associated with Enterobacter sakazakii in powdered milk formula. J Clin Microbiol 2001, 39:293-297.
- [8]Himelright I, Harris E, Lorch V, Anderson M: Enterobacter sakazakii infections associated with the use of powdered infant formula-Tennessee, 2001. J Am Med Assoc 2002, 287:2204-2205.
- [9]Iversen C, Forsythe S: Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. T Food Sci Technol 2003, 14:443-454.
- [10]Food and Agricultural Organization-World Health Organization: Enterobacter Sakazakii And Other Organisms In Powdered Infant Formula. Geneva; 2004. [Microbiological Risk Assessment Series 6] [http://www.who.int/foodsafety/publications/mra6-enterobacter-sakazakii/en/ webcite]
- [11]Food and Agricultural Organization-World Health Organization: Enterobacter Sakazakii And Salmonella In Powdered Infant Formula. Rome; 2006. [Microbiological Risk Assessment Series 10] [http://www.who.int/foodsafety/publications/mra10/en/ webcite]
- [12]Food and Agricultural Organization-World Health Organization: Enterobacter Sakazakii (Cronobacter spp.) In Powdered Follow-Up Formula. Washington; 2008. [Microbiological Risk Assessment Series 15] [http://www.who.int/foodsafety/publications/mra_followup/en/ webcite]
- [13]Farmer JJ, Asbury MA, Hickman FW, Brenner DJ: Enterobacter sakazakii: a new species of “Enterobacteriaceae” isolated from clinical specimens. Intl J Syst Bacteriol 1980, 30:569-584.
- [14]Iversen C, Waddington M, On SLW, Forsythe S: Identification and phylogeny of Enterobacter sakazakii relative to Enterobacter and Citrobacter. J Clin Microbiol 2004, 42:5368-5370.
- [15]Iversen C, Lehner A, Mullane N, Bidlas E, Cleenwerck I, Marugg J, Joosten H: The taxonomy of Enterobacter sakazakii: Proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol Biol 2007, 7:64. BioMed Central Full Text
- [16]Baldwin A, Loughlin M, Caubilla-Barron J, Kucerova E, Manning G, Dowson C, Forsythe S: Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes. BMC Microbiol 2009, 9:223. BioMed Central Full Text
- [17]Joseph S, Sonbol H, Hariri S, Desai P, McClelland M, Forsythe SJ: Diversity of the Cronobacter genus as revealed by multilocus sequence typing. J Clin Microbiol 2012, 50:3031-3039.
- [18]Codex Alimentarius Commission: Code of hygienic practice for powdered formulae for infants and young children. CAC/RCP 2008, 66:1-29.
- [19]Cetinkaya E, Joseph S, Ayhan K, Forsythe SJ: Comparison of methods for the microbiological identification and profiling of Cronobacter species from ingredients used in the preparation of infant formula. Mol Cell Probes 2013, 27:60-64.
- [20]Iversen C, Druggan P, Forsythe SJ: A selective differential medium for Enterobacter sakazakii. Intl J Food Microbiol 2004, 96:133-139.
- [21]Masood N, Moore K, Farbos A, Hariri S, Paszkiewicz K, Dickins B, McNally A, Forsythe S: Draft genome sequence of the earliest Cronobacter sakazakii sequence type 4 strain NCIMB 8272. Genome Announc 2013, 2:e00585-14.
- [22]Iversen C, Forsythe SJ: Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formula milk and related products. Food Microbiol 2004, 21:771-776.
- [23]Holy O, Forsythe SJ: Cronobacter species as emerging causes of healthcare-associated infection. J Hosptl Infect 2014, 86:169-177.
- [24]Hurrell E, Kucerova E, Loughlin M, Caubilla-Barron J, Hilton A, Armstrong R, Smith C, Grant J, Shoo S, Forsythe S: Neonatal enteral feeding tubes as loci for colonisation by members of the Enterobacteriaceae. BMC Infect Dis 2009, 9:146. BioMed Central Full Text
- [25]Joseph S, Forsythe SJ: Insights into the emergent bacterial pathogen Cronobacter spp., generated by multilocus sequence typing and analysis. Front Food Microbiol 2012, 3:397.
- [26]Hariri S, Joseph S, Forsythe SJ: Cronobacter sakazakii ST4 strains and neonatal meningitis, US. Emerg Inf Dis 2013, 19:175-177.
- [27]Joseph S, Forsythe S: Predominance of Cronobacter sakazakii sequence type 4 in neonatal infections. Emerg Inf Dis 2011, 17:1713-1715.
- [28]Muller A, Stephan R, Fricker-Feer C, Lehner A: Genetic diversity of Cronobacter sakazakii isolates collected from a Swiss infant formula production facility. J Food Protect 2013, 76:883-887.
- [29]Power KA, Yan Q, Fox EM, Cooney S, Fanning S: Genome sequence of Cronobacter sakazakii SP291, a persistent thermotolerant isolate derived from a factory producing powdered infant formula. Genome Announc 2013, 1:13.
- [30]Sonbol H, Joseph S, McAuley C, Craven H, Forsythe SJ: Multilocus sequence typing of Cronobacter spp. from powdered infant formula and milk powder production factories. Intl Dairy J 2013, 30:1-7.
- [31]Caubilla-Barron J, Hurrell E, Townsend S, Cheetham P, Loc-Carrillo C, Fayet O, Prere M-F, Forsythe SJ: Genotypic and phenotypic analysis of Enterobacter sakazakii strains from an outbreak resulting in fatalities in a neonatal intensive care unit in France. J Clin Microbiol 2007, 45:3979-3985.
- [32]Kucerova E, Joseph S, Forsythe S: Cronobacter: diversity and ubiquity. Qual Ass Safety Foods Crops 2011, 3:104-122.
- [33]Kucerova E, Clifton SW, Xia X-Q, Long F, Porwollik S, Fulton L, Fronick C, Minx P, Kyung K, Warren W, Fulton R, Feng D, Wollam A, Shah N, Bhonagiri V, Nash WE, Hallsworth-Pepin K, Wilson RK, McClelland M, Forsythe SJ: Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS One 2010, 5:e9556.
- [34]Joseph S, Desai P, Ji Y, Cummings CA, Shih R, Degoricija L, Forsythe SJ: Comparative analysis of genome sequences covering the seven Cronobacter species. PLoS One 2012, 7:e49455.
- [35]Chap J, Jackson P, Siqueira R, Gaspar N, Quintas C, Park J, Osaili T, Shaker R, Jaradat Z, Hartantyo SHP, Abdullah Sani N, Estuningsih S, Forsythe SJ: International survey of Cronobacter sakazakii and other Cronobacter spp. in follow up formulas and infant foods. Intl J Food Microbiol 2009, 136:185-188.
- [36]Iversen C, Mullane N, McCardell B, Tall BD, Lehner A, Fanning S, Joosten H: Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Intl J Syst Evol Microbiol 2008, 58:1442-1447.
- [37]Joseph S, Hariri S, Forsythe SJ: Lack of continuity between Cronobacter biotypes and species as determined using multilocus sequence typing. Mol Cell Probes 2013, 27:137-139.
- [38]Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras MJ, Forsythe SJ: Cronobacter condimenti sp. nov., isolated from spiced meat, and Cronobacter universalis sp. nov., a species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water and food ingredients. Intl J Syst Evol Microbiol 2012, 62:1277-1283.
- [39]Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P: Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): Proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol 2013, 36:309-319.
- [40]Masood N, Jackson E, Moore K, Farbos A, Paszkiewicz K, Dickins B, McNally A, Forsythe S: Draft genome sequence of “Candidatus Cronobacter colletis” NCTC 14934T, a new species in the genus Cronobacter. Genome Announc 2014, 2:e00585-14.
- [41]Jackson EE, Sonbol H, Masood N, Forsythe SJ: Genotypic and phenotypic characteristics of Cronobacter species, with particular attention to the newly reclassified species C. helveticus, C. pulveris, and C. zurichensis. Food Microbiol 2014, 44:226-235.
- [42]Stephan R, Grim CJ, Gopinath GR, Mammel MK, Sathyamoorthy V, Trach LH, Chase HR, Fanning S, Tall BD: Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris, and Enterobacter turicensis as members of Cronobacter and description of Siccibacter turicensis com. nov., Franconibacter helveticus comb. nov., and Franconibacter pulveris com. nov. Int J Syst Evol Microbiol 2014, 64:3402-3410.
- [43]Jolley KA, Maiden MC: BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform 2010, 11:595. BioMed Central Full Text
- [44]Huson DH, Bryant D: Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006, 23:254-267.
- [45]Tatusov RL, Galperin MY, Natale DA, Koonin EV: The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000, 28:33-36.
- [46]Samaluru H, SaiSree L, Reddy M: Role of SufI (FtsP) in cell division of Escherichia coli: evidence for its involvement in stabilizing the assembly of the divisome. J Bacteriol 2007, 189:8044-8052.
- [47]Townsend SM, Hurrell E, Gonzalez-Gomez I, Lowe J, Frye JG, Forsythe S, Badger JL: Enterobacter sakazakii invades brain capillary endothelial cells, persists in human macrophages influencing cytokine secretion and induces severe brain pathology in the neonatal rat. Microbiology 2007, 153:3538-3547.
- [48]Townsend SM, Hurrell E, Forsythe S: Virulence studies of Enterobacter sakazakii isolates associated with a neonatal intensive care unit outbreak. BMC Microbiol 2008, 8:64. BioMed Central Full Text
- [49]Grim CJ, Kothary MH, Gopinath G, Jarvis KG, Beaubrun JJ, McClelland M, Tall BD, Franco AA: Identification and characterization of Cronobacter iron acquisition systems. Appl Environ Microbiol 2012, 78:6035-6050.
- [50]Kim K, Kim KP, Choi J, Lim JA, Lee J, Hwang S, Ryu S: Outer membrane proteins A (OmpA) and X (OmpX) are essential for basolateral invasion of Cronobacter sakazakii. Appl Env Microbiol 2010, 76:5188-5198.
- [51]Franco AA, Kothary MH, Gopinath G, Jarvis KG, Grim CJ, Hu L, Datta AR, McCardell BA, Tall BD: Cpa, the outer membrane protease of Cronobacter sakazakii, activates plasminogen and mediates resistance to serum bactericidal activity. Infect Immun 2011, 79:1578-1587.
- [52]Joseph S, Hariri S, Masood N, Forsythe S: Sialic acid utilization by Cronobacter sakazakii. Microbial Inform Exptn 2013, 3:3. BioMed Central Full Text
- [53]Chen Y, Lampel K, Hammack T: Bacteriological Analytical Manual, Chapter 29. Cronobacter[http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm289378.htm webcite]
PDF