期刊论文详细信息
BMC Evolutionary Biology
Impact of constitutional copy number variants on biological pathway evolution
Francesca Demichelis1  Mark A Rubin2  Omer Gokcumen3  Samprit Banerjee4  Maria Poptsova2 
[1] Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA;Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA;Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA;Department of Public Health, Weill Cornell Medical College, New York, NY, USA
关键词: eQTL;    Population genetics;    Pathway evolution;    Pathways;    CNVs;   
Others  :  1130248
DOI  :  10.1186/1471-2148-13-19
 received in 2012-06-22, accepted in 2013-01-18,  发布年份 2013
PDF
【 摘 要 】

Background

Inherited Copy Number Variants (CNVs) can modulate the expression levels of individual genes. However, little is known about how CNVs alter biological pathways and how this varies across different populations. To trace potential evolutionary changes of well-described biological pathways, we jointly queried the genomes and the transcriptomes of a collection of individuals with Caucasian, Asian or Yoruban descent combining high-resolution array and sequencing data.

Results

We implemented an enrichment analysis of pathways accounting for CNVs and genes sizes and detected significant enrichment not only in signal transduction and extracellular biological processes, but also in metabolism pathways. Upon the estimation of CNV population differentiation (CNVs with different polymorphism frequencies across populations), we evaluated that 22% of the pathways contain at least one gene that is proximal to a CNV (CNV-gene pair) that shows significant population differentiation. The majority of these CNV-gene pairs belong to signal transduction pathways and 6% of the CNV-gene pairs show statistical association between the copy number states and the transcript levels.

Conclusions

The analysis suggested possible examples of positive selection within individual populations including NF-kB, MAPK signaling pathways, and Alu/L1 retrotransposition factors. Altogether, our results suggest that constitutional CNVs may modulate subtle pathway changes through specific pathway enzymes, which may become fixed in some populations.

【 授权许可】

   
2013 Poptsova et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150226185932655.pdf 691KB PDF download
Figure 4. 29KB Image download
Figure 3. 112KB Image download
Figure 2. 53KB Image download
Figure 1. 150KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C: Detection of large-scale variation in the human genome. Nat Genet 2004, 36(9):949-951.
  • [2]Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Maner S, Massa H, Walker M, Chi M, et al.: Large-scale copy number polymorphism in the human genome. Science 2004, 305(5683):525-528.
  • [3]Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, et al.: Origins and functional impact of copy number variation in the human genome. Nature 2010, 464(7289):704-712.
  • [4]Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Gibbs RA, Hurles ME, McVean GA: A map of human genome variation from population-scale sequencing. Nature 2010, 467(7319):1061-1073.
  • [5]Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A, Yoon SC, Ye K, Cheetham RK, et al.: Mapping copy number variation by population-scale genome sequencing. Nature 2011, 470(7332):59-65.
  • [6]Fanciulli M, Petretto E, Aitman TJ: Gene copy number variation and common human disease. Clin Genet 2010, 77(3):201-213.
  • [7]Voight BF, Kudaravalli S, Wen X, Pritchard JK: A map of recent positive selection in the human genome. PLoS Biol 2006, 4(3):e72.
  • [8]McCarroll SA, Huett A, Kuballa P, Chilewski SD, Landry A, Goyette P, Zody MC, Hall JL, Brant SR, Cho JH, et al.: Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat Genet 2008, 40(9):1107-1112.
  • [9]Yang TL, Chen XD, Guo Y, Lei SF, Wang JT, Zhou Q, Pan F, Chen Y, Zhang ZX, Dong SS, et al.: Genome-wide copy-number-variation study identified a susceptibility gene, UGT2B17, for osteoporosis. Am J Hum Genet 2008, 83(6):663-674.
  • [10]Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, Berndt SI, Elliott AL, Jackson AU, Lamina C, et al.: Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 2009, 41(1):25-34.
  • [11]Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ, Freedman BI, Quinones MP, Bamshad MJ, et al.: The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 2005, 307(5714):1434-1440.
  • [12]Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, Conroy J, Magalhaes TR, Correia C, Abrahams BS, et al.: Functional impact of global rare copy number variation in autism spectrum disorders. Nature 2010, 466(7304):368-372.
  • [13]Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, et al.: Strong association of de novo copy number mutations with autism. Science 2007, 316(5823):445-449.
  • [14]McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S, Perkins DO, Dickel DE, Kusenda M, Krastoshevsky O, et al.: Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet 2009, 41(11):1223-1227.
  • [15]Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S, Fossdal R, Sigurdsson E, Sigmundsson T, Buizer-Voskamp JE, et al.: Large recurrent microdeletions associated with schizophrenia. Nature 2008, 455(7210):232-236.
  • [16]Demichelis F, Setlur SR, Banerjee S, Chakravarty D, Chen JY, Chen CX, Huang J, Beltran H, Oldridge DA, Kitabayashi N, et al.: Identification of functionally active, low frequency copy number variants at 15q21.3 and 12q21.31 associated with prostate cancer risk. Proc Natl Acad Sci USA 2012, 109(17):6686-6691.
  • [17]Diskin SJ, Hou C, Glessner JT, Attiyeh EF, Laudenslager M, Bosse K, Cole K, Mosse YP, Wood A, Lynch JE, et al.: Copy number variation at 1q21.1 associated with neuroblastoma. Nature 2009, 459(7249):987-991.
  • [18]Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, Guigo R, Dermitzakis ET: Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 2010, 464(7289):773-777.
  • [19]Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras JB, Stephens M, Gilad Y, Pritchard JK: Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 2010, 464(7289):768-772.
  • [20]Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, de Grassi A, Lee C, et al.: Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 2007, 315(5813):848-853.
  • [21]Banerjee S, Oldridge D, Poptsova M, Hussain W, Chakravarty D, Demichelis F: A computational framework discovers New copy number variants with functional importance. PLoS One 2011, 6(3):e17539.
  • [22]Schlattl A, Anders S, Waszak SM, Huber W, Korbel JO: Relating CNVs to transcriptome data at fine-resolution: Assessment of the effect of variant size, type, and overlap with functional regions. Genome Res 2011, 21(12):2004-2013.
  • [23]Akey JM: Constructing genomic maps of positive selection in humans: where do we go from here? Genome Res 2009, 19(5):711-722.
  • [24]Andres AM, Hubisz MJ, Indap A, Torgerson DG, Degenhardt JD, Boyko AR, Gutenkunst RN, White TJ, Green ED, Bustamante CD, et al.: Targets of balancing selection in the human genome. Mol Biol Evol 2009, 26(12):2755-2764.
  • [25]Hernandez RD, Kelley JL, Elyashiv E, Melton SC, Auton A, McVean G, Sella G, Przeworski M: Classic selective sweeps were rare in recent human evolution. Science 2011, 331(6019):920-924.
  • [26]Kelley JL, Swanson WJ: Positive selection in the human genome: from genome scans to biological significance. Annu Rev Genomics Hum Genet 2008, 9:143-160.
  • [27]Kato M, Kawaguchi T, Ishikawa S, Umeda T, Nakamichi R, Shapero MH, Jones KW, Nakamura Y, Aburatani H, Tsunoda T: Population-genetic nature of copy number variations in the human genome. Hum Mol Genet 2010, 19(5):761-773.
  • [28]Jakobsson M, Scholz SW, Scheet P, Gibbs JR, VanLiere JM, Fung HC, Szpiech ZA, Degnan JH, Wang K, Guerreiro R, et al.: Genotype, haplotype and copy-number variation in worldwide human populations. Nature 2008, 451(7181):998-1003.
  • [29]Cavalli-Sforza LL, Menozzi P, Piazza A: The history and geography of human genes. Princeton, N.J.: Princeton University Press; 1996.
  • [30]Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, Werner J, Villanea FA, Mountain JL, Misra R, et al.: Diet and the evolution of human amylase gene copy number variation. Nat Genet 2007, 39(10):1256-1260.
  • [31]Xue Y, Sun D, Daly A, Yang F, Zhou X, Zhao M, Huang N, Zerjal T, Lee C, Carter NP, et al.: Adaptive evolution of UGT2B17 copy-number variation. Am J Hum Genet 2008, 83(3):337-346.
  • [32]Niu AL, Wang YQ, Zhang H, Liao CH, Wang JK, Zhang R, Che J, Su B: Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function. BMC Evol Biol 2011, 11:298. BioMed Central Full Text
  • [33]King MC, Wilson AC: Evolution at two levels in humans and chimpanzees. Science 1975, 188(4184):107-116.
  • [34]Blekhman R, Marioni JC, Zumbo P, Stephens M, Gilad Y: Sex-specific and lineage-specific alternative splicing in primates. Genome Res 2010, 20(2):180-189.
  • [35]Flowers JM, Sezgin E, Kumagai S, Duvernell DD, Matzkin LM, Schmidt PS, Eanes WF: Adaptive evolution of metabolic pathways in Drosophila. Mol Biol Evol 2007, 24(6):1347-1354.
  • [36]Eanes WF: Molecular population genetics and selection in the glycolytic pathway. J Exp Biol 2011, 214(Pt 2):165-171.
  • [37]Horowitz NH: On the evolution of biochemical synthesis. Proc Natl Acad Sci USA 1945, 31:153-157.
  • [38]Ycas M: On earlier states of the biochemical system. J Theor Biol 1974, 44(1):145-160.
  • [39]Lazcano A, Miller SL: On the origin of metabolic pathways. J Mol Evol 1999, 49(4):424-431.
  • [40]Kuhn RM, Karolchik D, Zweig AS, Wang T, Smith KE, Rosenbloom KR, Rhead B, Raney BJ, Pohl A, Pheasant M, et al.: The UCSC genome browser database: update 2009. Nucleic Acids Res 2009, 37(Database issue):D755-761.
  • [41]Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28(1):27-30.
  • [42]Weir BS, Hill WG: Estimating F-statistics. Annu Rev Genet 2002, 36:721-750.
  • [43]McCarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, Wysoker A, Shapero MH, de Bakker PI, Maller JB, Kirby A, et al.: Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet 2008, 40(10):1166-1174.
  • [44]Habegger L, Sboner A, Gianoulis TA, Rozowsky J, Agarwal A, Snyder M, Gerstein M: RSEQtools: a modular framework to analyze RNA-Seq data using compact, anonymized data summaries. Bioinformatics 2011, 27(2):281-283.
  • [45]Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, et al.: Global variation in copy number in the human genome. Nature 2006, 444(7118):444-454.
  • [46]Holsinger KE, Weir BS: Genetics in geographically structured populations: defining, estimating and interpreting F(ST). Nat Rev Genet 2009, 10(9):639-650.
  • [47]Baye TM, Wilke RA, Olivier M: Genomic and geographic distribution of private SNPs and pathways in human populations. Per Med 2009, 6(6):623-641.
  • [48]Kudaravalli S, Veyrieras JB, Stranger BE, Dermitzakis ET, Pritchard JK: Gene expression levels are a target of recent natural selection in the human genome. Mol Biol Evol 2009, 26(3):649-658.
  • [49]Yamit-Hezi A, Nir S, Wolstein O, Dikstein R: Interaction of TAFII105 with selected p65/RelA dimers is associated with activation of subset of NF-kappa B genes. J Biol Chem 2000, 275(24):18180-18187.
  • [50]Romani B, Engelbrecht S, Glashoff RH: Antiviral roles of APOBEC proteins against HIV-1 and suppression by Vif. Arch Virol 2009, 154(10):1579-1588.
  • [51]Bogerd HP, Wiegand HL, Hulme AE, Garcia-Perez JL, O’Shea KS, Moran JV, Cullen BR: Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc Natl Acad Sci USA 2006, 103(23):8780-8785.
  • [52]Burgess DL, Gefrides LA, Foreman PJ, Noebels JL: A cluster of three novel Ca2+ channel gamma subunit genes on chromosome 19q13.4: evolution and expression profile of the gamma subunit gene family. Genomics 2001, 71(3):339-350.
  • [53]Freilich S, Goldovsky L, Ouzounis CA, Thornton JM: Metabolic innovations towards the human lineage. BMC Evol Biol 2008, 8:247. BioMed Central Full Text
  • [54]Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV, Muzny DM, Yang SP, Wang Z, Chinwalla AT, Minx P, et al.: Comparative and demographic analysis of orang-utan genomes. Nature 2011, 469(7331):529-533.
  • [55]Lanktree M, Hegele RA: Copy number variation in metabolic phenotypes. Cytogenet Genome Res 2008, 123(1–4):169-175.
  • [56]Kim PM, Korbel JO, Gerstein MB: Positive selection at the protein network periphery: evaluation in terms of structural constraints and cellular context. Proc Natl Acad Sci USA 2007, 104(51):20274-20279.
  • [57]Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, Palma A, Mikkelsen TS, Altshuler D, Lander ES: Positive natural selection in the human lineage. Science 2006, 312(5780):1614-1620.
  • [58]Barreiro LB, Laval G, Quach H, Patin E, Quintana-Murci L: Natural selection has driven population differentiation in modern humans. Nat Genet 2008, 40(3):340-345.
  • [59]Nguyen DQ, Webber C, Hehir-Kwa J, Pfundt R, Veltman J, Ponting CP: Reduced purifying selection prevails over positive selection in human copy number variant evolution. Genome Res 2008, 18(11):1711-1723.
  • [60]Schuster-Bockler B, Conrad D, Bateman A: Dosage sensitivity shapes the evolution of copy-number varied regions. PLoS One 2010, 5(3):e9474.
  • [61]Yamit-Hezi A, Dikstein R: TAFII105 mediates activation of anti-apoptotic genes by NF-kappaB. EMBO J 1998, 17(17):5161-5169.
  • [62]Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG, et al.: Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 2004, 306(5696):704-708.
  • [63]Qiao L, Nachbar RB, Kevrekidis IG, Shvartsman SY: Bistability and oscillations in the Huang-Ferrell model of MAPK signaling. PLoS Comput Biol 2007, 3(9):1819-1826.
  • [64]Veitia RA: Gene dosage balance in cellular pathways: implications for dominance and gene duplicability. Genetics 2004, 168(1):569-574.
  • [65]Veitia RA: Gene dosage balance: deletions, duplications and dominance. Trends Genet 2005, 21(1):33-35.
  • [66]Veitia RA: Nonlinear effects in macromolecular assembly and dosage sensitivity. J Theor Biol 2003, 220(1):19-25.
  文献评价指标  
  下载次数:13次 浏览次数:14次