期刊论文详细信息
BMC Genomics
Inorganic Arsenic-induced cellular transformation is coupled with genome wide changes in chromatin structure, transcriptome and splicing patterns
Yvonne N Fondufe-Mittendorf1  Eric C Rouchka3  Kuey Chu Chen2  Zhou Zhang4  Steven Grason Godfrey1  Manana Melikishvili1  Ye Ma1  Caitlyn Riedmann1 
[1]Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington 40536, KY, USA
[2]Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington 40536, KY, USA
[3]Department of Computer Engineering and Computer Science, University of Louisville, Louisville 40292, KY, USA
[4]Graduate Center for Toxicology, University of Kentucky, Lexington 40536, KY, USA
关键词: Splicing;    Arsenic;    Chromatin;    Genome-wide;    Gene expression;   
Others  :  1140492
DOI  :  10.1186/s12864-015-1295-9
 received in 2014-09-02, accepted in 2015-01-29,  发布年份 2015
PDF
【 摘 要 】

Background

Arsenic (As) exposure is a significant worldwide environmental health concern. Low dose, chronic arsenic exposure has been associated with a higher than normal risk of skin, lung, and bladder cancer, as well as cardiovascular disease and diabetes. While arsenic-induced biological changes play a role in disease pathology, little is known about the dynamic cellular changes resulting from arsenic exposure and withdrawal.

Results

In these studies, we sought to understand the molecular mechanisms behind the biological changes induced by arsenic exposure. A comprehensive global approach was employed to determine genome-wide changes to chromatin structure, transcriptome patterns and splicing patterns in response to chronic low dose arsenic and its subsequent withdrawal. Our results show that cells exposed to chronic low doses of sodium arsenite have distinct temporal and coordinated chromatin, gene expression, and miRNA changes consistent with differentiation and activation of multiple biochemical pathways. Most of these temporal patterns in gene expression are reversed when arsenic is withdrawn. However, some gene expression patterns remained altered, plausibly as a result of an adaptive response by cells. Additionally, the correlation of changes to gene expression and chromatin structure solidify the role of chromatin structure in gene regulatory changes due to arsenite exposure. Lastly, we show that arsenite exposure influences gene regulation both at the initiation of transcription as well as at the level of splicing.

Conclusions

Our results show that adaptation of cells to iAs-mediated EMT is coupled to changes in chromatin structure effecting differential transcriptional and splicing patterns of genes. These studies provide new insights into the mechanism of iAs-mediated pathology, which includes epigenetic chromatin changes coupled with changes to the transcriptome and splicing patterns of key genes.

【 授权许可】

   
2015 Riedmann et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150325025837683.pdf 2542KB PDF download
Figure 8. 48KB Image download
Figure 7. 57KB Image download
Figure 6. 82KB Image download
Figure 5. 97KB Image download
Figure 4. 43KB Image download
Figure 3. 83KB Image download
Figure 2. 69KB Image download
Figure 1. 26KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]States JC, Srivastava S, Chen Y, Barchowsky A: Arsenic and cardiovascular disease. Tox Sci Off J Soc Toxicol 2009, 107(2):312-23.
  • [2]Tapio S, Grosche B: Arsenic in the aetiology of cancer. Mutat Res 2006, 612(3):215-46.
  • [3]Dangleben NL, Skibola CF, Smith MT: Arsenic immunotoxicity: a review. Environ Health Global Access Sci Source 2013, 12(1):73.
  • [4]He J, Wang M, Jiang Y, Chen Q, Xu S, Xu Q, et al.: Chronic arsenic exposure and angiogenesis in human bronchial epithelial cells via the ROS/miR-199a-5p/HIF-1alpha/COX-2 pathway. Environ Health Perspect 2014, 122(3):255-61.
  • [5]Hubaux R, Becker-Santos DD, Enfield KS, Rowbotham D, Lam S, Lam WL, et al.: Molecular features in arsenic-induced lung tumors. Mol Cancer 2013, 12:20. BioMed Central Full Text
  • [6]Kitchin KT, Conolly R: Arsenic-induced carcinogenesis–oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment. Chem Res Toxicol 2010, 23(2):327-35.
  • [7]Rossman TG: Mechanism of arsenic carcinogenesis: an integrated approach. Mutat Res 2003, 533(1–2):37-65.
  • [8]Klein CB, Leszczynska J, Hickey C, Rossman TG: Further evidence against a direct genotoxic mode of action for arsenic-induced cancer. Toxicol Appl Pharmacol 2007, 222(3):289-97.
  • [9]Arita A, Costa M: Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics Integrated Biometal Sci 2009, 1(3):222-8.
  • [10]Ren X, McHale CM, Skibola CF, Smith AH, Smith MT, Zhang L: An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. Environ Health Perspect 2011, 119(1):11-9.
  • [11]Hernandez-Castro B, Doniz-Padilla LM, Salgado-Bustamante M, Rocha D, Ortiz-Perez MD, Jimenez-Capdeville ME, et al.: Effect of arsenic on regulatory T cells. J Clin Immunol 2009, 29(4):461-9.
  • [12]Stueckle TA, Lu Y, Davis ME, Wang L, Jiang BH, Holaskova I, et al.: Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharmacol 2012, 261(2):204-16.
  • [13]Tokar EJ, Diwan BA, Waalkes MP: Arsenic exposure transforms human epithelial stem/progenitor cells into a cancer stem-like phenotype. Environ Health Perspect 2010, 118(1):108-15.
  • [14]Wang X, Son YO, Chang Q, Sun L, Hitron JA, Budhraja A, et al.: NADPH oxidase activation is required in reactive oxygen species generation and cell transformation induced by hexavalent chromium. Toxicol Sci Off J Soc Toxicol 2011, 123(2):399-410.
  • [15]Sun H, Clancy HA, Kluz T, Zavadil J, Costa M: Comparison of gene expression profiles in chromate transformed BEAS-2B cells. PLoS One 2011, 6(3):e17982.
  • [16]O’Hara KA, Vaghjiani RJ, Nemec AA, Klei LR, Barchowsky A: Cr (VI)-stimulated STAT3 tyrosine phosphorylation and nuclear translocation in human airway epithelial cells requires Lck. Biochemical J 2007, 402(2):261-9.
  • [17]Chen H, Kluz T, Zhang R, Costa M: Hypoxia and nickel inhibit histone demethylase JMJD1A and repress Spry2 expression in human bronchial epithelial BEAS-2B cells. Carcinogenesis 2010, 31(12):2136-44.
  • [18]Cai T, Li X, Ding J, Luo W, Li J, Huang C: A cross-talk between NFAT and NF-kappaB pathways is crucial for nickel-induced COX-2 expression in Beas-2B cells. Curr Cancer Drug Targets 2011, 11(5):548-59.
  • [19]Lewis DR, Southwick JW, Ouellet-Hellstrom R, Rench J, Calderon RL: Drinking water arsenic in Utah: a cohort mortality study. Environ Health Perspect 1999, 107(5):359-65.
  • [20]Steinmaus C, Yuan Y, Bates MN, Smith AH: Case–control study of bladder cancer and drinking water arsenic in the western United States. Am J Epidemiol 2003, 158(12):1193-201.
  • [21]Tokar EJ, Person RJ, Sun Y, Perantoni AO, Waalkes MP: Chronic exposure of renal stem cells to inorganic arsenic induces a cancer phenotype. Chem Res Toxicol 2013, 26(1):96-105.
  • [22]Nagata S: Apoptotic DNA fragmentation. Exp Cell Res 2000, 256(1):12-8.
  • [23]Nalabothula N, McVicker G, Maiorano J, Martin R, Pritchard JK, Fondufe-Mittendorf YN: The chromatin architectural proteins HMGD1 and H1 bind reciprocally and have opposite effects on chromatin structure and gene regulation. BMC Genomics 2014, 15:92. BioMed Central Full Text
  • [24]Woodcock CL, Skoultchi AI, Fan Y: Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res Int J Molecular Supramolecular Evol Aspects Chromosome Biol 2006, 14(1):17-25.
  • [25]Krishnakumar R, Gamble MJ, Frizzell KM, Berrocal JG, Kininis M, Kraus WL: Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science 2008, 319(5864):819-21.
  • [26]Ragab A, Thompson EC, Travers AA: High mobility group proteins HMGD and HMGZ interact genetically with the Brahma chromatin remodeling complex in Drosophila. Genetics 2006, 172(2):1069-78.
  • [27]Zhou X, Sun X, Cooper KL, Wang F, Liu KJ, Hudson LG: Arsenite interacts selectively with zinc finger proteins containing C3H1 or C4 motifs. J Biol Chem 2011, 286(26):22855-63.
  • [28]Sun X, Zhou X, Du L, Liu W, Liu Y, Hudson LG, et al.: Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. Toxicol Appl Pharmacol 2014, 274(2):313-8.
  • [29]Hays AM, Lantz RC, Rodgers LS, Sollome JJ, Vaillancourt RR, Andrew AS, et al.: Arsenic-induced decreases in the vascular matrix. Toxicol Pathol 2008, 36(6):805-17.
  • [30]Posey T, Weng T, Chen Z, Chintagari NR, Wang P, Jin N, et al.: Arsenic-induced changes in the gene expression of lung epithelial L2 cells: implications in carcinogenesis. BMC Genomics 2008, 9:115. BioMed Central Full Text
  • [31]Mi H, Muruganujan A, Thomas PD: PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 2013, 41(Database issue):D377-86.
  • [32]States JC, Barchowsky A, Cartwright IL, Reichard JF, Futscher BW, Lantz RC: Arsenic toxicology: translating between experimental models and human pathology. Environ Health Perspect 2011, 119(10):1356-63.
  • [33]Zhou X, Sun X, Mobarak C, Gandolfi AJ, Burchiel SW, Hudson LG, et al.: Differential binding of monomethylarsonous acid compared to arsenite and arsenic trioxide with zinc finger peptides and proteins. Chem Res Toxicol 2014, 27(4):690-8.
  • [34]Flight RM, Harrison BJ, Mohammad F, Bunge MB, Moon LD, Petruska JC, et al.: categoryCompare, an analytical tool based on feature annotations. Front Genet 2014, 5:98.
  • [35]Trabosh VA, Divito KA, DA B, Simbulan-Rosenthal CM, Rosenthal DS: Sequestration of E12/E47 and suppression of p27KIP1 play a role in Id2-induced proliferation and tumorigenesis. Carcinogenesis 2009, 30(7):1252-9.
  • [36]Nik AM, Reyahi A, Ponten F, Carlsson P: Foxf2 in intestinal fibroblasts reduces numbers of Lgr5 (+) stem cells and adenoma formation by inhibiting Wnt signaling. Gastroenterology 2013, 144(5):1001-11.
  • [37]Kong PZ, Yang F, Li L, Li XQ, Feng YM: Decreased FOXF2 mRNA expression indicates early-onset metastasis and poor prognosis for breast cancer patients with histological grade II tumor. PLoS One 2013, 8(4):e61591.
  • [38]Wang Y, Zhou Y, Graves DT: FOXO transcription factors: their clinical significance and regulation. BioMed Res Int 2014, 2014:925350.
  • [39]Kobayashi W, Ozawa M: The transcription factor LEF-1 induces an epithelial-mesenchymal transition in MDCK cells independent of beta-catenin. Biochem Biophys Res Commun 2013, 442(1–2):133-8.
  • [40]Dai W, Wang F, He L, Lin C, Wu S, Chen P, et al. Genistein inhibits hepatocellular carcinoma cell migration by reversing the epithelial-mesenchymal transition: Partial mediation by the transcription factor NFAT. Mol Carcinog 2013, Nov 14. doi:10.1002/mc.22100.
  • [41]Zheng R, Blobel GA: GATA transcription factors and cancer. Genes Cancer 2010, 1(12):1178-88.
  • [42]Zabuawala T, Taffany DA, Sharma SM, Merchant A, Adair B, Srinivasan R, et al.: An ets2-driven transcriptional program in tumor-associated macrophages promotes tumor metastasis. Cancer Res 2010, 70(4):1323-33.
  • [43]Mok SC, Bonome T, Vathipadiekal V, Bell A, Johnson ME, Wong KK, et al.: A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril-associated glycoprotein 2. Cancer Cell 2009, 16(6):521-32.
  • [44]Albig AR, Becenti DJ, Roy TG, Schiemann WP: Microfibril-associate glycoprotein-2 (MAGP-2) promotes angiogenic cell sprouting by blocking notch signaling in endothelial cells. Microvasc Res 2008, 76(1):7-14.
  • [45]Miyamoto A, Lau R, Hein PW, Shipley JM, Weinmaster G: Microfibrillar proteins MAGP-1 and MAGP-2 induce Notch1 extracellular domain dissociation and receptor activation. J Biol Chem 2006, 281(15):10089-97.
  • [46]Sharma S, Salehi F, Scheithauer BW, Rotondo F, Syro LV, Kovacs K: Role of MGMT in tumor development, progression, diagnosis, treatment and prognosis. Anticancer Res 2009, 29(10):3759-68.
  • [47]Yang S, Yan HL, Tao QF, Yuan SX, Tang GN, Yang Y, et al.: Low CADM2 expression predicts high recurrence risk of hepatocellular carcinoma patients after hepatectomy. J Cancer Res Clin Oncol 2014, 140(1):109-16.
  • [48]Severson PL, Tokar EJ, Vrba L, Waalkes MP, Futscher BW: Coordinate H3K9 and DNA methylation silencing of ZNFs in toxicant-induced malignant transformation. Epigenetics Off J DNA Methylation Soc 2013, 8(10):1080-8.
  • [49]Qiu C, Wang D, Wang E, Cui Q: An upstream interacting context based framework for the computational inference of microRNA functions. Mol BioSyst 2012, 8(5):1492-8.
  • [50]Xu Y, Tokar EJ, Person RJ, Orihuela RG, Ngalame NN, Waalkes MP: Recruitment of normal stem cells to an oncogenic phenotype by noncontiguous carcinogen-transformed epithelia depends on the transforming carcinogen. Environ Health Perspect 2013, 121(8):944-50.
  • [51]Lee MY, Shen MR: Epithelial-mesenchymal transition in cervical carcinoma. Am J Transl Res 2012, 4(1):1-13.
  • [52]Li J, Zhou BP: Activation of β-catenin and AKT pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer 2011, 11:49. BioMed Central Full Text
  • [53]Xiao W, Zhou S, Hu H, Li H, He G, Liu Y, et al.: Nogo-B promotes the epithelial-mesenchymal transition in HeLa cervical cancer cells via Fibulin-5. Oncol Rep 2013, 29(1):109-16.
  • [54]Banno K, Iida M, Yanokura M, Kisu I, Iwata T, Tominaga E, et al. MicroRNA in cervical cancer: OncomiRs and tumor suppressor miRs in diagnosis and treatment. ScientificWorldJournal. 2014, doi:10.1155/2014/178075.
  • [55]Tian X, Zhang S, Liu HM, Zhang YB, Blair CA, Mercola D, et al.: Histone lysine-specific methyltransferases and demethylases in carcinogenesis: new targets for cancer therapy and prevention. Curr Cancer Drug Targets 2013, 13(5):558-79.
  • [56]Chervona Y, Arita A, Costa M: Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics Integrated Biometal Sci 2012, 4(7):619-27.
  • [57]Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, Lahiri S, et al.: DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci Off J Soc Toxicol 2006, 89(2):431-7.
  • [58]Liang YJ, Wang QY, Zhou CX, Yin QQ, He M, Yu XT, et al.: MiR-124 targets Slug to regulate epithelial-mesenchymal transition and metastasis of breast cancer. Carcinogenesis 2013, 34(3):713-22.
  • [59]Lu Y, Lu J, Li X, Zhu H, Fan X, Zhu S, et al.: MiR-200a inhibits epithelial-mesenchymal transition of pancreatic cancer stem cell. BMC Cancer 2014, 14:85. BioMed Central Full Text
  • [60]Ye F, Tang H, Liu Q, Xie X, Wu M, Liu X, et al.: miR-200b as a prognostic factor in breast cancer targets multiple members of RAB family. J Transl Med 2014, 12:17. BioMed Central Full Text
  • [61]Ding XM: MicroRNAs: regulators of cancer metastasis and epithelial-mesenchymal transition (EMT). Chinese J Cancer 2014, 33(3):140-7.
  • [62]Chen DQ, Pan BZ, Huang JY, Zhang K, Cui SY, De W, et al. HDAC 1/4-mediated silencing of microRNA-200b promotes chemoresistance in human lung adenocarcinoma cells. Oncotarget 2014.
  • [63]Shukla S, Oberdoerffer S: Co-transcriptional regulation of alternative pre-mRNA splicing. Biochim Biophys Acta 2012, 1819(7):673-83.
  • [64]Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S, Djebali S, et al.: Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res 2012, 22(9):1616-25.
  • [65]Zhao R, Hou Y, Xue P, Woods CG, Fu J, Feng B, et al.: Long isoforms of NRF1 contribute to arsenic-induced antioxidant response in human keratinocytes. Environ Health Perspect 2011, 119(1):56-62.
  • [66]Zhang Y, Beezhold K, Castranova V, Shi X, Chen F: Characterization of an alternatively spliced GADD45alpha, GADD45alpha1 isoform, in arsenic-treated epithelial cells. Mol Carcinog 2009, 48(5):454-64.
  • [67]Mastrangelo AM, Marone D, Laido G, De Leonardis AM, De Vita P: Alternative splicing: enhancing ability to cope with stress via transcriptome plasticity. Plant Sci Int J Experimental Plant Biol 2012, 185–186:40-9.
  • [68]Zhou GB, Zhang J, Wang ZY, Chen SJ, Chen Z: Treatment of acute promyelocytic leukaemia with all-trans retinoic acid and arsenic trioxide: a paradigm of synergistic molecular targeting therapy. Philos Trans R Soc Lond B Biol Sci 2007, 362(1482):959-71.
  • [69]Teves SS, Henikoff S: Salt fractionation of nucleosomes for genome-wide profiling. Methods Mol Biol 2012, 833:421-32.
  • [70]Collins JA, Schandi CA, Young KK, Vesely J, Willingham MC: Major DNA fragmentation is a late event in apoptosis. J Histochemist Cytochemist Off J Histochemist Soc 1997, 45(7):923-34.
  • [71]Shi L, Jones WD, Jensen RV, Harris SC, Perkins RG, Goodsaid FM, et al.: The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies. BMC Bioinformatics 2008, 9(Suppl 9):S10. BioMed Central Full Text
  • [72]Mi H, Muruganujan A, Casagrande JT, Thomas PD: Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 2013, 8(8):1551-66.
  • [73]Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28(1):27-30.
  • [74]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005, 102(43):15545-50.
  文献评价指标  
  下载次数:44次 浏览次数:20次