期刊论文详细信息
BMC Evolutionary Biology
Variable interaction specificity and symbiont performance in Panamanian Trachymyrmex and Sericomyrmex fungus-growing ants
Jacobus J Boomsma2  Henrik H De Fine Licht1 
[1] Present address: Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, DK-1871, Denmark;Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, DK-2100, Denmark
关键词: Leucoagaricus;    Attini;    AZCL insoluble chromogenic substrates;   
Others  :  1121786
DOI  :  10.1186/s12862-014-0244-6
 received in 2014-05-14, accepted in 2014-11-14,  发布年份 2014
PDF
【 摘 要 】

Background

Cooperative benefits of mutualistic interactions are affected by genetic variation among the interacting partners, which may have consequences for interaction-specificities across guilds of sympatric species with similar mutualistic life histories. The gardens of fungus-growing (attine) ants produce carbohydrate active enzymes that degrade plant material collected by the ants and offer them food in exchange. The spectrum of these enzyme activities is an important symbiont service to the host but may vary among cultivar genotypes. The sympatric occurrence of several Trachymyrmex and Sericomyrmex higher attine ants in Gamboa, Panama provided the opportunity to do a quantitative study of species-level interaction-specificity.

Results

We genotyped the ants for Cytochrome Oxidase and their Leucoagaricus fungal cultivars for ITS rDNA. Combined with activity measurements for 12 carbohydrate active enzymes, these data allowed us to test whether garden enzyme activity was affected by fungal strain, farming ants or combinations of the two. We detected two cryptic ant species, raising ant species number from four to six, and we show that the 38 sampled colonies reared a total of seven fungal haplotypes that were different enough to represent separate Leucoagaricus species. The Sericomyrmex species and one of the Trachymyrmex species reared the same fungal cultivar in all sampled colonies, but the remaining four Trachymyrmex species largely shared the other cultivars. Fungal enzyme activity spectra were significantly affected by both cultivar species and farming ant species, and more so for certain ant-cultivar combinations than others. However, relative changes in activity of single enzymes only depended on cultivar genotype and not on the ant species farming a cultivar.

Conclusions

Ant cultivar symbiont-specificity varied from almost full symbiont sharing to one-to-one specialization, suggesting that trade-offs between enzyme activity spectra and life-history traits such as desiccation tolerance, disease susceptibility and temperature sensitivity may apply in some combinations but not in others. We hypothesize that this may be related to ecological specialization in general, but this awaits further testing. Our finding of both cryptic ant species and extensive cultivar diversity underlines the importance of identifying all species-level variation before embarking on estimates of interaction specificity.

【 授权许可】

   
2014 De Fine Licht and Boomsma; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150213012118811.pdf 836KB PDF download
Figure 3. 58KB Image download
Figure 2. 76KB Image download
Figure 1. 79KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Sachs JL, Essenberg C, Turcotte MM: New paradigms for the evolution of beneficial infections. Trends Ecol Evol 2011, 26(4):202-209.
  • [2]Sachs JL, Simms EL: Pathways to mutualism breakdown. Trends Ecol Evol 2006, 21(10):585-592.
  • [3]Herre EA, Knowlton N, Mueller UG, Rehner SA: The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evol 1999, 14(2):49-53.
  • [4]Douglas A: The Symbiotic Habit. Princeton University Press, Princeton; 2010.
  • [5]Leigh EG: The evolution of mutualism. J Evolution Biol 2010, 23(12):2507-2528.
  • [6]Moran NA: Symbiosis. Curr Biol 2006, 16(20):R866-R871.
  • [7]Stanton ML: Interacting guilds: moving beyond the pairwise perspective on mutualisms. Am Nat 2003, 162(4 Suppl):S10-S23.
  • [8]Moran NA: Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci U S A 2007, 104(1 Suppl):8627-8633.
  • [9]Richards S, Gibbs RA, Gerardo NM, Moran N, Nakabachi A, Stern D, Tagu D, Wilson ACC, Muzny D, Kovar C, Cree A, Chacko J, Chandrabose MN, Dao MD, Dinh HH, Gabisi RA, Hines S, Hume J, Jhangian SN, Joshi V, Lewis LR, Liu YS, Lopez J, Morgan MB, Nguyen NB, Okwuonu GO, Ruiz SJ, Santibanez J, Wright RA, Fowler GR, et al.: Genome Sequence of the Pea Aphid Acyrthosiphon pisum. PLoS Biol 2010, 8(2):e1000313.
  • [10]Heath KD, Stinchcombe JR: Explaining mutualism variation: a new evolutionary paradox? Evolution 2014, 68(2):309-317.
  • [11]Bever JD: Dynamics within mutualism and the maintenance of diversity: inference from a model of interguild frequency dependence. Ecol Lett 1999, 2(1):52-62.
  • [12]Foster KR, Kokko H: Cheating can stabilize cooperation in mutualisms. P R Soc B 2006, 273(1598):2233-2239.
  • [13]Scheuring I, Yu DW: How to assemble a beneficial microbiome in three easy steps. Ecol Lett 2012, 15(11):1300-1307.
  • [14]Schluter J, Foster KR: The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol 2012, 10(11):e1001424.
  • [15]Molbo D, Machado CA, Sevenster JG, Keller L, Herre EA: Cryptic species of fig-pollinating wasps: implications for the evolution of the fig-wasp mutualism, sex allocation, and precision of adaptation. Proc Natl Acad Sci U S A 2003, 100(10):5867-5872.
  • [16]Roe AD, Rice AV, Coltman DW, Cooke JE, Sperling FA: Comparative phylogeography, genetic differentiation and contrasting reproductive modes in three fungal symbionts of a multipartite bark beetle symbiosis. Mol Ecol 2011, 20(3):584-600.
  • [17]Mueller UG, Scott JJ, Ishak HD, Cooper M, Rodrigues A: Monoculture of leafcutter ant gardens. PLoS One 2010, 5(9):e12668.
  • [18]Scott JJ, Budsberg KJ, Suen G, Wixon DL, Balser TC, Currie CR: Microbial community structure of leaf-cutter ant fungus gardens and refuse dumps. PLoS One 2010, 5(3):e9922.
  • [19]Suen G, Scott JJ, Aylward FO, Adams SM, Tringe SG, Pinto-Tomas AA, Foster CE, Pauly M, Weimer PJ, Barry KW, Goodwin LA, Bouffard P, Li L, Osterberger J, Harkins TT, Slater SC, Donohue TJ, Currie CR: An insect herbivore microbiome with high plant biomass-degrading capacity. PLoS Genet 2010, 6(9):e1001129.
  • [20]Poulsen M, Boomsma JJ: Mutualistic fungi control crop diversity in fungus-growing ants. Science 2005, 307(5710):741-744.
  • [21]Mikheyev AS, Mueller UG, Boomsma JJ: Population genetic signatures of diffuse co-evolution between leaf-cutting ants and their cultivar fungi. Mol Ecol 2007, 16(1):209-216.
  • [22]Hinkle G, Wetterer JK, Schultz TR, Sogin ML: Phylogeny of the attine ant fungi based on analysis of small subunit ribosomal RNA gene sequences. Science 1994, 266(5191):1695-1697.
  • [23]Mehdiabadi NJ, Mueller UG, Brady SG, Himler AG, Schultz TR: Symbiont fidelity and the origin of species in fungus-growing ants. Nat Commun 2012, 3:840.
  • [24]Vo TL, Mueller UG, Mikheyev AS: Free-living fungal symbionts (Lepiotaceae) of fungus-growing ants (Attini: Formicidae). Mycologia 2009, 101(2):206-210.
  • [25]Mehdiabadi NJ, Schultz TR: Natural history and phylogeny of the fungus-farming ants (Hymenoptera: Formicidae: Myrmicinae: Attini). Myrmecol News 2010, 13:37-55.
  • [26]Weber NA: Fungus growing ants. Science 1966, 153(3736):587-604.
  • [27]Poulsen M, Fernández-Marín H, Currie CR, Boomsma JJ: Ephemeral windows of opportunity for horizontal transmission of fungal symbionts in leaf-cutting ants. Evolution 2009, 63(9):2235-2247.
  • [28]Mueller UG: Ant versus fungus versus mutualism: ant-cultivar conflict and the deconstruction of the attine ant-fungus symbiosis. Am Nat 2002, 160(4 Suppl):S67-S98.
  • [29]Mikheyev AS, Mueller UG, Abbot P: Cryptic sex and many-to-one colevolution in the fungus-growing ant symbiosis. Proc Natl Acad Sci U S A 2006, 103(28):10702-10706.
  • [30]Silva-Pinhati ACO, Bacci M Jr, Hinkle G, Sogin ML, Pagnocca FC, Martins VG, Bueno OC, Hebling MJA: Low variation in ribosomal DNA and internal transcribed spacers of the symbiotic fungi of leaf-cutting ants (Attini: Formicidae). Braz J Med Biol Res 2004, 37(10):1463-1472.
  • [31]Mikheyev AS, Mueller UG, Abbot P: Comparative dating of attine ant and Lepiotaceous cultivar phylogenies reveals coevolutionary synchrony and discord. Am Nat 2010, 175(6):E126-E133.
  • [32]Mikheyev AS, Vo T, Mueller UG: Phylogeography of post-Pleistocene population expansion in a fungus-gardening ant and its microbial mutualists. Mol Ecol 2008, 17(20):4480-4488.
  • [33]Aanen DK, Ros VID, De Fine Licht HH, Mitchell J, de Beer ZW, Slippers B, Rouland-LeFevre C, Boomsma JJ: Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa. BMC Evol Biol 2007, 7(115):1-11.
  • [34]De Fine Licht HH, Boomsma JJ: Forage collection, substrate preparation and diet composition in fungus-growing ants. Ecol Entomol 2010, 35(3):259-269.
  • [35]Kooij PW, Liberti J, Giampoudakis K, Schiøtt M, Boomsma JJ: Differences in forage-acquisition and fungal enzyme activity contribute to niche segregation in Panamanian leaf-cutting ants. PLoS One 2014, 9(4):e94284.
  • [36]Kooij P, Schiøtt M, Boomsma JJ, De Fine Licht HH: Rapid shifts in Atta cephalotes fungus-garden enzyme activity after a change in fungal substrate (Attini, Formicidae). Insec Soc 2011, 58(2):145-151.
  • [37]De Fine Licht HH, Schiøtt M, Mueller UG, Boomsma JJ: Evolutionary transitions in enzyme activity of ant fungus gardens. Evolution 2010, 64(7):2055-2069.
  • [38]Fernández-Marín H, Zimmerman JK, Wcislo WT: Ecological traits and evolutionary sequence of nest establishment in fungus-growing ants (Hymenoptera, Formicidae, Attini). Biol J Linn Soc 2004, 81(1):39-48.
  • [39]Villesen P, Murakami T, Schultz TR, Boomsma JJ: Identifying the transition between single and multiple mating of queens in fungus-growing ants. Proc R Soc B 2002, 269:1541-1548.
  • [40]White TJ, Bruns SL, Taylor JW: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols. Edited by Innis MA, Gelfrand DH, Sninsky JJ, White T. Academic, San Diego, California; 1990:315-322.
  • [41]Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P: Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain-reaction primers. Ann Entomol Soc Am 1994, 87(6):651-701.
  • [42]Villesen P, Mueller UG, Schultz TR, Adams RMM, Bouck AC: Evolution of ant-cultivar specialization and cultivar switching in Apterostigma fungus-growing ants. Evolution 2004, 58(10):2252-2265.
  • [43]Wetterer JK, Schultz TR, Meier R: Phylogeny of fungus-growing ants (Tribe Attini) based on mtDNA sequence and morphology. Mol Phylogenet Evol 1998, 9(1):42-47.
  • [44]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
  • [45]Milne I, Lindner D, Bayer M, Husmeier D, McGuire G, Marshall DF, Wright F: TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics 2009, 25(1):126-127.
  • [46]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22(21):2688-2690.
  • [47]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17(8):754-755.
  • [48]Bandelt HJ, Forster P, Rohl A: Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999, 16(1):37-48.
  • [49][www.fluxus-engineering.com] webcite Free Phylogenetic Network Software. []
  • [50]Clement M, Posada D, Crandall KA: TCS: a computer program to estimate gene genealogies. Mol Ecol 2000, 9(10):1657-1659.
  • [51]Templeton AR, Crandall KA, Sing CF: A cladistic-analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA-sequence data.3. cladogram estimation. Genetics 1992, 132(2):619-633.
  • [52]Excoffier L, Laval G, Schneider S: Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 2005, 1:47-50.
  • [53]R Development Core Team: R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2012.
  • [54][http://rsb.info.nih.gov/ij/] webcite Image J: Image processing and analysis in Java. []
  • [55]Ten LN, Im WT, Kim MK, Kang MS, Lee ST: Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Met 2004, 56(3):375-382.
  • [56]Schiøtt M, De Fine Licht HH, Lange L, Boomsma JJ: Towards a molecular understanding of symbiont function: Identification of a fungal gene for the degradation of xylan in the fungus gardens of leaf-cutting ants.BMC Microbiol 2008, 8(40). doi:10.1186/1471-2180-8-40.
  • [57]Pedersen M, Hollensted M, Lange L, Andersen B: Screening for cellulose and hemicellulose degrading enzymes from the fungal genus Ulocladium. Int Biodeter Biodegr 2009, 63(4):484-489.
  • [58]Adams RMM, Mueller UG, Holloway AK, Green AM, Narozniak J: Garden sharing and garden stealing in fungus-growing ants. Naturwissenschaften 2000, 87(11):491-493.
  • [59]Weber WM: A new guest-ant and other new Formicidae from Barro Colorado Island, Panama. Biol Bull Mar Biol Lab, Woods Hole 1925, 49(3):150-181.
  • [60]Fernández-Marín H, Zimmerman JK, Nash DR, Boomsma JJ, Wcislo WT: Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants. Proc R Soc B 2009, 276:2263-2269.
  • [61]Kellner K, Fernández-Marín H, Ishak HD, Sen R, Linksvayer TA, Mueller UG: Co-evolutionary patterns and diversification of ant-fungus associations in the asexual fungus-farming ant Mycocepurus smithii in Panama. J Evolution Biol 2013, 26(6):1353-1362.
  • [62]Bourke AFG: Principles of Social Evolution. Oxford University Press, New York; 2011.
  • [63]Okasha S: Evolution and the Levels of Selection. Oxford University Press, Oxford; 2006.
  • [64]Aanen DK, De Fine Licht HH, Debets AJM, Kerstes NAG, Hoekstra RF, Boomsma JJ: High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. Science 2009, 326(5956):1103-1106.
  • [65]Nygaard S, Zhang GJ, Schiott M, Li C, Wurm Y, Hu HF, Zhou JJ, Ji L, Qiu F, Rasmussen M, Pan HL, Hauser F, Krogh A, Grimmelikhuijzen CJP, Wang J, Boomsma JJ: The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming. Genome Res 2011, 21(8):1339-1348.
  • [66]Aylward FO, Burnum-Johnson KE, Tringe SG, Teiling C, Tremmel DM, Moeller JA, Scott JJ, Barry KW, Piehowski PD, Nicora CD, Malfatti SA, Monroe ME, Purvine SO, Goodwin LA, Smith RD, Weinstock GM, Gerardo NM, Suen G, Lipton MS, Currie CR: Leucoagaricus gongylophorus produces diverse enzymes for the degradation of recalcitrant plant polymers in leaf-cutter ant fungus gardens. Appl Environ Microbiol 2013, 79(12):3770-3778.
  • [67]Radford A: Polysaccharidases. In The Mycota III—Biochemistry and Molecular Biology. Edited by Brambl R, Marzluf GA. Springer, Berlin-Heidelberg; 2004:233-247.
  • [68]Mueller UG, Mikheyev AS, Hong E, Sen R, Warren DL, Solomon SE, Ishak HD, Cooper M, Miller JL, Shaffer KA, Juenger TE: Evolution of cold-tolerant fungal symbionts permits winter fungiculture by leafcutter ants at the northern frontier of a tropical ant-fungus symbiosis. Proc Natl Acad Sci U S A 2011, 108(10):4053-4056.
  • [69]Asplen MK, Bruns E, David AS, Denison RF, Epstein B, Kaiser MC, Kaser JM, Lacroix C, Mohl EK, Quiram G, Prescott K, Stanton-Geddes J, Vincent JB, Wragg PD, May G: Do trade-offs have explanatory power for the evolution of organismal interactions? Evolution 2011, 66(5):1297-1307.
  文献评价指标  
  下载次数:12次 浏览次数:22次