期刊论文详细信息
BMC Evolutionary Biology
Lotka–Volterra dynamics kills the Red Queen: population size fluctuations and associated stochasticity dramatically change host-parasite coevolution
Hinrich Schulenburg2  Arne Traulsen1  Andrei Papkou2  Chaitanya S Gokhale1 
[1] Evolutionary Theory Group, Max Planck Institute for Evolutionary Biology, August Thienemann Str-2, 24306, Plön, Germany;Department of Evolutionary Ecology and Genetics, Christian-Albrechts-University of Kiel, 24098, Kiel, Germany
关键词: Population bottleneck;    Genetic drift;    Lotka-Volterra dynamics;    Red Queen hypothesis;    Host-parasite coevolution;   
Others  :  1085063
DOI  :  10.1186/1471-2148-13-254
 received in 2013-08-08, accepted in 2013-11-13,  发布年份 2013
PDF
【 摘 要 】

Background

Host-parasite coevolution is generally believed to follow Red Queen dynamics consisting of ongoing oscillations in the frequencies of interacting host and parasite alleles. This belief is founded on previous theoretical work, which assumes infinite or constant population size. To what extent are such sustained oscillations realistic?

Results

Here, we use a related mathematical modeling approach to demonstrate that ongoing Red Queen dynamics is unlikely. In fact, they collapse rapidly when two critical pieces of realism are acknowledged: (i) population size fluctuations, caused by the antagonism of the interaction in concordance with the Lotka-Volterra relationship; and (ii) stochasticity, acting in any finite population. Together, these two factors cause fast allele fixation. Fixation is not restricted to common alleles, as expected from drift, but also seen for originally rare alleles under a wide parameter space, potentially facilitating spread of novel variants.

Conclusion

Our results call for a paradigm shift in our understanding of host-parasite coevolution, strongly suggesting that these are driven by recurrent selective sweeps rather than continuous allele oscillations.

【 授权许可】

   
2013 Gokhale et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113170342661.pdf 1428KB PDF download
Figure 5. 19KB Image download
Figure 4. 81KB Image download
Figure 3. 63KB Image download
Figure 2. 24KB Image download
Figure 1. 106KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Carroll L: Through the Looking-glass, and what Alice Found there. London: Macmillan; 1871. Reprinted: Bloomsbury, London, 2001
  • [2]Ridley M: Evolution,. Oxford: Wiley-Blackwell; 2003.
  • [3]Barton NH, Briggs DEG, Eisen JA, Goldstein DB, Patel NH: Evolution,. NY: Cold Spring Harbor Laboratory Press; 2007.
  • [4]van Valen L: A new evolutionary law. Evol Theory 1973, 1:1-30.
  • [5]Woolhouse MEJ, Webster JP, Domingo E, Charlesworth B, Levin BR: Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 2002, 32(4):569-577.
  • [6]Schmid-Hempel P: Evolutionary Parasitology: The Integrated Study of Infections, Immunology, Ecology, and Genetics. USA: Oxford Biology. Oxford University Press; 2011.
  • [7]Fenner F, Fantini B: Biological Control of Vertebrate pests. The History of Myxomatosis–an Experiment in Evolution. Oxfordshire: CABI Publishing; 1999.
  • [8]Jokela J, Dybdahl MF, Lively CM: The maintenance of sex, clonal dynamics, and host-parasite coevolution in a mixed population of sexual and asexual snails. Am Nat 2009, 174(s1):43-53.
  • [9]Decaestecker E, Gaba S, Raeymaekers JAM, R. Stoks LvK, Ebert D, Meester LD: Host–parasite ‘Red queen’ dynamics archived in pond sediment. Nature 2007, 450:870-873.
  • [10]Bohannan BJM, Lenski RE: Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett 2000, 3(4):362-377.
  • [11]Buckling A, Rainey PB: Antagonistic coevolution between a bacterium and a bacteriophage. Proc R Soc B 2002, 269:931-936.
  • [12]Brockhurst MA, Morgan AD, Fenton A, Buckling A: Experimental coevolution with bacteria and phage: The pseudomonas fluorescens-phi2 model system. Infect Genet Evol 2007, 7(4):547-552.
  • [13]Schulte RD, Makus C, Hasert B, Michiels NK, Schulenburg H: Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite. Proc Natl Acad Sci USA 2010, 107(16):7359-7364.
  • [14]Morran LT, Schmidt OG, Gelarden IA, Parrish-II RC, Lively CM: Running with the red queen: Host-parasite coevolution selects for biparental sex. Science 2011, 333:216-218.
  • [15]Bérénos C, Schmid-Hempel P, Wegner KM: Experimental coevolution leads to a decrease in parasite-induced host mortality. J Evol Biol 2011, 24(8):1777-1782.
  • [16]Fischer O, Schmid-Hempel P: Selection by parasites may increase host recombination frequency. Biol Lett 2005, 1(2):193-195.
  • [17]King KC, Delph LF, Jokela J, Lively CM: Coevolutionary hotspots and coldspots for host sex and parasite local adaptation in a snail–trematode interaction. Oikos 2011, 120(9):1335-1340.
  • [18]Koskella B, Thompson JN, Preston GM, Buckling A: Local biotic environment shapes the spatial scale of bacteriophage adaptation to bacteria. Am Nat 2011, 177(4):440-451.
  • [19]Gandon S, Buckling A, Decaestecker E, Day T: Host-parasite coevolution and patterns of adaptation across time and space. J Evol Biol 2008, 21:1861-1866.
  • [20]Gaba S, Ebert D: Time-shift experiments as a tool to study antagonistic coevolution. Trends Ecol Evol 2009, 24(4):226-232.
  • [21]Brockhurst MA, Koskella B: Experimental coevolution of species interactions. Trends Ecol Evol 2013, 28(6):367-375.
  • [22]Lenski RE, Levin BR: Constraints on the coevolution of bacteria and virulent phage: A model, some experiments and predictions for natural communities. Am Nat 1985, 125:585-602.
  • [23]Scanlan PD, Hall AR, Lopez-Pascua LDC, Buckling A: Genetic basis of infectivity evolution in a bacteriophage. Mol Ecol 2011, 20:981-989.
  • [24]Meyer JR, Dobias DT, Weitz JS, Barrick JE, Quick RT, Lenski RE: Repeatability and contingency in he evolution of a key innovation in phage lambda. Science 2012, 335:428-432.
  • [25]Hall AR, Scanlan PD, Morgan AD, Buckling A: Host-parasite coevolutionary arms races give way to fluctuating selection. Ecol Lett 2011, 14:635-642.
  • [26]Lively CM, Dybdahl MF: Parasite adaptation to locally common host genotypes. Nature 2000, 405:679-681.
  • [27]Anderson RM, May RM: Infectious Diseases of Humans: Dynamics and Control. USA: Oxford University Press; 1992.
  • [28]Dobson AP, Hudson PJ: Microparasites: observed patterns in wild animal populations. In Ecology of Infectious Diseases in Natural Populations. Edited by Grenfell BT, Dobson AP. Cambridge: Cambridge University Press; 1995:52-89.
  • [29]Hudson PJ, Dobson AP: Macroparasites: observed patterns in naturally fluctuating animal populations. In Ecology of Infectious Diseases in Natural Populations. Edited by Grenfell BT, Dobson AP. Cambridge: Cambridge University Press; 1995:144-176.
  • [30]Bohannan BJM, Lenski RE: Effect of prey heterogeneity on the response of a model food chain to resource enrichment. Am Nat 1999, 153:73-82.
  • [31]Lotka AJ: Analytical note on certain rhythmic relations in organic systems. Proc Nat Acad Sci USA 1920, 6:410-415.
  • [32]Volterra V: Variations and fluctuations of the number of individuals in animal species living together. J du conseil international pour l’exploration de la mer 1928, 3(1):3-51.
  • [33]May RM, Anderson RM: Epidemiology and genetics in the coevolution of parasites and hosts. Proc R Soc Lond B Biol Sci 1983, 219(1216):281-313.
  • [34]Frank SA: Ecological and genetic models of host-pathogen coevolution. Heredity 1991, 67:73-83.
  • [35]Heesterbeek JAP, Roberts MG: Mathematical models for microparasites of wildlife. In Ecology of Infectious Diseases in Natural Populations. Edited by Grenfell BT, Dobson AP. Cambridge: Cambridge University Press; 1995:90-122.
  • [36]Roberts MG, Smith G, Grenfell BT: Mathematical models for macroparasites of wildlife. In Ecology of Infectious Diseases in Natural Populations. Edited by Grenfell BT, Dobson AP. Cambridge: Cambridge University Press; 1995:177-208.
  • [37]Gandon S, Nuismer SL: Interactions between genetic drift, gene flow, and selection mosaics drive parasite local adaptation. Am Nat 2009, 173(2):212-224.
  • [38]Kirby GC, Burdon JJ: Effects of mutation and random drift on Leonard’s gene-for-gene coevolution model. Phytopathology 1997, 87(5):488-493.
  • [39]Salathé M, Scherer A, Bonhoeffer S: Neutral drift and polymorphism in gene-for-gene systems. Ecol Lett 2005, 8:925-932.
  • [40]Quigley BJZ, López DG, Buckling A, McKane AJ, Brown SP: The mode of host-parasite interactions shapes coevolutionary dynamics and the fate of host cooperation. Proc R Soc B 2012, 279(1743):3742-3748.
  • [41]Gillespie DT: Exact stochastic simulation of coupled chemical reactions. J Phys Chem 1977, 81(25):2340-2361.
  • [42]Black AJ, McKane AJ: Stochastic formulation of ecological models and their applications. Trends Ecol Evol 2012, 27:337-345.
  • [43]Stiven AE: Experimental studies on the epidemiology of the host parasite system, hydra and hydramoeba hydroxena (Entz). II. the components of a simple epidemic. Ecol Monogr 1964, 34(2):119-142.
  • [44]Bach PD, Smith HS: Are population oscillations inherent in the host-parasite relation? Ecology 1941, 22(4):363-369.
  • [45]Pimentel D: Population regulation and genetic feedback evolution provides foundation for control of herbivore, parasite, and predator numbers in nature. Science 1968, 159(3822):1432-1437.
  • [46]Utida S: Cyclic fluctuations of population density intrinsic to the host-parasite system. Ecology 1957, 38(3):442-449.
  • [47]Hudson PJ, Dobson AP, Newborn D: Prevention of population cycles by parasite removal. Science 1998, 282(5397):2256-2258.
  • [48]Gillespie JH: Genetic drift in an infinite population: the pseudohitchhiking model. Genetics 2000, 155(2):909-919.
  • [49]Lenormand T, Roze D, Rousset F: Stochasticity in evolution. Trends Ecol Evol 2009, 24(3):157-165.
  • [50]Campos PRA, Wahl LM: The effects of population bottlenecks on clonal interference, and the adaptation effective population size. Evolution 2009, 63(4):950-958.
  • [51]Wahl LM, Krakauer DC: Models of experimental evolution: the role of genetic chance and selective necessity. Genetics 2000, 156(3):1437-1448.
  • [52]Wahl LM, Gerrish PJ: The probability that beneficial mutations are lost in populations with periodic bottlenecks. Evolution 2001, 55(12):2606-2610.
  • [53]Handel A, Bennett MR: Surviving the bottleneck: transmission mutants and the evolution of microbial populations. Genetics 2008, 180(4):2193-2200.
  • [54]Ponting CP: The functional repertoires of metazoan genomes. Nat Rev Genet 2008, 9:689-698.
  • [55]Levasseur A, Pontarotti P: The role of duplications in the evolution of genomes highlights the need for evolutionary-based approaches in comparative genomics. Biol Direct 2011, 6(11):1-12.
  • [56]Andersson DI, Hughes D: Gene amplification and adaptive evolution in bacteria. Ann Rev Genet 2009, 43:167-195.
  • [57]Moran GP, Coleman DC, Sullivan DJ: Comparative genomics and the evolution of pathogenicity in human pathogenic fungi. Eukaryotic Cell 2011, 10(1):34-42.
  • [58]Merhej V, Raoult D: Rickettsial evolution in the light of comparative genomics. Biol Rev 2011, 86:379-405.
  • [59]Iskow RC, Gokcumen O, Lee C: Exploring the role of copy number variants in human adaptation. Trends Genet 2012, 28(6):245-257.
  • [60]Korbel JO, Kim PM, Chen X, Urban AE, Weissman S, Snyder M, Gerstein MB: The current excitement about copy-number variation: how it relates to gene duplications and protein families. Curr Opin Struct Biol 2008, 18:366-374.
  • [61]Lively CM, Apanius V: Genetic diversity in host-parasite interactions. In Ecology of Infectious Diseases in Natural Populations. Edited by Grenfell BT, Dobson AP. Cambridge: Cambridge University Press; 1995:421-449.
  • [62]Frank SA: Specific and non-specific defense against parasitic attack. J Theor Biol 2000, 202(4):283-304.
  • [63]Agrawal AF, Lively CM: Modelling infection as a two-step process combining gene-for-gene and matching-allele genetics. Proc R Soc B: Biol Sci 2003, 270(1512):323-334.
  • [64]Fenton A, Antonovics J, Brockhurst MA: Two-step infection processes can lead to coevolution between functionally independent infection and resistance pathways. Evolution 2012, 66(7):2030-2041.
  • [65]Thrall PH, Laine A-L, Ravensdale M, Nemri A, Dodds PN, Barrett LG, Burdon JJ: Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecol Lett 2012, 15(5):425-435.
  • [66]Wolinska J, King KC: Environment can alter selection in host-parasite interactions. Trends Parasitol 2009, 25(5):236-244.
  • [67]Dybdahl MF, Lively CM: Host-parasite coevolution: evidence for rare advantage and time-lagged selection in a natural population. Evolution 1998, 52(4):1057-1066.
  • [68]Eizaguirre C, Lenz TL, Kalbe M, Milinski M: Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. Nat Commun 2012, 3(621):1-6.
  • [69]Luijckx P, Fienberg H, Duneau D, Ebert D: A matching-allele model explains host resistance to parasites. Curr Biol 2013, 23(12):1085-1088.
  • [70]Gillespie D: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 1976, 22:403-434.
  • [71]McKane AJ, Newman TJ: Stochastic models in population biology and their deterministic analogs. Phys Rev E 2004, 70:19.
  文献评价指标  
  下载次数:0次 浏览次数:0次