期刊论文详细信息
BMC Evolutionary Biology
Developing diagnostic SNP panels for the identification of true fruit flies (Diptera: Tephritidae) within the limits of COI-based species delimitation
Martín Aluja1  Juan Rull1  Joerg Samietz2  Beatrice Frey2  Larissa Guillén1  Juerg E Frey2 
[1] Instituto de Ecología, A.C, Apartado Postal 63, Xalapa, Veracruz, 91000, México;Federal Department of Economic Affairs FDEA, Agroscope Changins-Wädenswil Research Station ACW, Department of Plant Protection, Schloss, P.O. 185, Wädenswil, 8820, Switzerland
关键词: COI;    Cytochrome oxidase I;    Tephritidae;    Quarantine pest insects;    Species delimitation;    Species identification;    Single nucleotide polymorphisms;    Diagnostic SNPs;   
Others  :  1087298
DOI  :  10.1186/1471-2148-13-106
 received in 2012-11-05, accepted in 2013-05-15,  发布年份 2013
PDF
【 摘 要 】

Background

Rapid and reliable identification of quarantine pests is essential for plant inspection services to prevent introduction of invasive species. For insects, this may be a serious problem when dealing with morphologically similar cryptic species complexes and early developmental stages that lack distinctive characters useful for taxonomic identification. DNA based barcoding could solve many of these problems. The standard barcode fragment, an approx. 650 base pairs long sequence of the 5′end of the mitochondrial cytochrome oxidase I (COI), enables differentiation of a very wide range of arthropods. However, problems remain in some taxa, such as Tephritidae, where recent genetic differentiation among some of the described species hinders accurate molecular discrimination.

Results

In order to explore the full species discrimination potential of COI, we sequenced the barcoding region of the COI gene of a range of economically important Tephritid species and complemented these data with all GenBank and BOLD entries for the systematic group available as of January 2012. We explored the limits of species delimitation of this barcode fragment among 193 putative Tephritid species and established operational taxonomic units (OTUs), between which discrimination is reliably possible. Furthermore, to enable future development of rapid diagnostic assays based on this sequence information, we characterized all single nucleotide polymorphisms (SNPs) and established “near-minimal” sets of SNPs that differentiate among all included OTUs with at least three and four SNPs, respectively.

Conclusions

We found that although several species cannot be differentiated based on the genetic diversity observed in COI and hence form composite OTUs, 85% of all OTUs correspond to described species. Because our SNP panels are developed based on all currently available sequence information and rely on a minimal pairwise difference of three SNPs, they are highly reliable and hence represent an important resource for developing taxon-specific diagnostic assays. For selected cases, possible explanations that may cause composite OTUs are discussed.

【 授权许可】

   
2013 Frey et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116024745171.pdf 589KB PDF download
Figure 7. 33KB Image download
Figure 6. 147KB Image download
Figure 5. 118KB Image download
Figure 4. 108KB Image download
Figure 1. 57KB Image download
Figure 2. 31KB Image download
Figure 1. 38KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 1.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Olden JD, Leroy Poff N, Douglas MR, Douglas ME, Fausch KD: Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 2004, 19(1):18-24.
  • [2]Armstrong KF, Ball SL: DNA barcodes for biosecurity: invasive species identification. Philos Trans R Soc Lond B Biol Sci 2005, 360(1462):1813-1823.
  • [3]Frézal L, Leblois R: Four years of DNA barcoding: current advances and prospects. Infect Genet Evol 2008, 8(5):727-736.
  • [4]Meier R, Shiyang K, Vaidya G, Ng PK: DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol 2006, 55(5):715-728.
  • [5]Aluja M, Mangan RL: Fruit fly (Diptera: Tephritidae) host status determination: critical conceptual, methodological, and regulatory considerations. Annu Rev Entomol 2008, 53:473-502.
  • [6]Aluja M, Guillen L, Rull J, Hohn H, Frey J, Graf B, Samietz J: Is the alpine divide becoming more permeable to biological invasions?-Insights on the invasion and establishment of the Walnut Husk Fly, Rhagoletis completa (Diptera: Tephritidae) in Switzerland. Bull Entomol Res 2011, 101(4):451-465.
  • [7]Baliraine FN, Bonizzoni M, Guglielmino CR, Osir EO, Lux SA, Mulaa FJ, Gomulski LM, Zheng L, Quilici S, Gasperi G, et al.: Population genetics of the potentially invasive African fruit fly species, Ceratitis rosa and Ceratitis fasciventris (Diptera : Tephritidae). Mol Ecol 2004, 13(3):683-695.
  • [8]De Meyer M, Robertson MP, Mansell MW, Ekesi S, Tsuruta K, Mwaiko W, Vayssieres JF, Peterson AT: Ecological niche and potential geographic distribution of the invasive fruit fly Bactrocera invadens (Diptera, Tephritidae). Bull Entomol Res 2010, 100(1):35-48.
  • [9]Drew RAI: Biogeography and speciation in the Dacini (Diptera: Tephritidae: Dacinae). In D Elmo Hardy Memorial Volume Contributions to the Systematics and Evolution of Diptera. vol. 12. Edited by Evenhuis NLKKY. Bishop Museum Bulletin in Entomology; 2004:165-178.
  • [10]Van Houdt JKJ, Breman FC, Virgilio M, De Meyer M: Recovering full DNA barcodes from natural history collections of Tephritid fruitflies (Tephritidae, Diptera) using mini barcodes. Mol Ecol Resour 2010, 10(3):459-465.
  • [11]Bush GL: The taxonomy, cytology, and evolution of the genus Rhagoletis in North America (Diptera: Tephritidae). Bull Mus Comp Zool 1966, 134:431-562.
  • [12]Clarke AR, Armstrong KF, Carmichael AE, Milne JR, Raghu S, Roderick GK, Yeates DK: Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies. Annu Rev Entomol 2005, 50:293-319.
  • [13]DeMeyer M: Phylogenetic relationships within the fruit fly genus Ceratitis MacLeay (Diptera: Tephritidae), derived from morphological and host plant evidence. Insect Systematics and Evolution 2005, 36:459-480.
  • [14]Hernández O, Bartolucci A, Morales-Valles P, Frías D, Selivon D: Cryptic species of the Anastrepha fraterculus complex (Diptera: Tephritidae): a multivariate approach for the recognition of South American morphotypes. Ann Entomol Soc Am 2012, 105:305-318.
  • [15]Hernández-Ortiz V, Gómez-Anaya J, Sánchez A, McPheron B, Aluja M: Morphometric analysis of Mexican and South American populations of the Anastrepha fraterculus complex (Diptera: Tephritidae) and recognition of a distinct Mexican morphotype. Bull Entomol Res 2004, 94(6):487-499.
  • [16]Selivon D, Perondini ALP, Morgante JS: A genetic-morphological characterization of two cryptic species of the Anastrepha fraterculus complex (Diptera : Tephritidae). Ann Entomol Soc Am 2005, 98(3):367-381.
  • [17]Steck GJ: Biochemical systematics and population genetic-structure of Anastrepha-fraterculus and related species (Diptera, Tephritidae). Ann Entomol Soc Am 1991, 84(1):10-28.
  • [18]Aluja M, Perez-Staples D, Macias-Ordonez R, Pinero J, McPheron B, Hernandez-Ortiz V: Nonhost status of Citrus sinensis cultivar valencia and C. paradisi cultivar ruby red to Mexican Anastrepha fraterculus (Diptera: Tephritidae). J Econ Entomol 2003, 96(6):1693-1703.
  • [19]Barr NB, McPheron BA: Molecular phylogenetics of the genus Ceratitis (Diptera : Tephritidae). Mol Phylogenet Evol 2006, 38(1):216-230.
  • [20]Berlocher SH, Feder JL: Sympatric speciation in phytophagous insects: moving beyond controversy? Annu Rev Entomol 2002, 47:773-815.
  • [21]Feder JL, Berlocher SH, Roethele JB, Dambroski H, Smith JJ, Perry WL, Gavrilovic V, Filchak KE, Rull J, Aluja M: Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. Proc Natl Acad Sci USA 2003, 100(18):10314-10319.
  • [22]Rull JTE, Aluja M, Guillen L, Egan SP, Feder JL: Hybridization and sequential components of reproductive isolation between parapatric walnut-infesting sister species Rhagoletis completa and R. zoqui. Biol J Linnean Soc 2012, 107(4):886-898.
  • [23]Armstrong KF, Cameron CM, Frampton ER: Fruit fly (Diptera: Tephritidae) species identification: a rapid molecular diagnostic technique for quarantine application. Bull Entomol Res 1997, 87(2):111-118.
  • [24]Brunner PC, Fleming C, Frey JE: A molecular identification key for economically important thrips species (Thysanoptera: Thripidae) using direct sequencing and a PCR-RFLP-based approach. Agric For Entomol 2002, 4:127-136.
  • [25]Frey JE, Frey B, Baur R: Molecular identification of the swede midge (Diptera : Cecidomyiidae). Can Entomol 2004, 136(6):771-780.
  • [26]Haymer DS, Tanaka T, Teramae C: DNA probes can be used to discriminate between Tephritid species at all stages of the life-cycle (Diptera, Tephritidae). J Econ Entomol 1994, 87(3):741-746.
  • [27]Blacket MJ, Semeraro L, Malipatil MB: Barcoding Queensland fruit flies (Bactrocera tryoni): impediments and improvements. Mol Ecol Resour 2012, 12(3):428-436.
  • [28]Xie X, Michel AP, Schwarz D, Rull J, Velez S, Forbes AA, Aluja M, Feder JL: Radiation and divergence in the Rhagoletis Pomonella species complex: inferences from DNA sequence data. J Evol Biol 2008, 21(3):900-913.
  • [29]Brown S, Collins R, Boyer S, Lefort M-C, Malumbres-Olarte J, Vink C, Cruickshank R: Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol Ecol Resour 2012, 12(3):562-565.
  • [30]Bertolazzi P, Felici G, Weitschek E: Learning to classify species with barcodes. BMC Bioinforma 2009, 14(10 Suppl):S7.
  • [31]Chang CJ, Huang YT, Chao KM: A greedier approach for finding tag SNPs. Bioinformatics 2006, 22(6):685-691.
  • [32]Ting CK, Lin WT, Huang YT: Multi-objective tag SNPs selection using evolutionary algorithms. Bioinformatics 2010, 26(11):1446-1452.
  • [33]Saeys Y, Inza I, Larranaga P: A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23(19):2507-2517.
  • [34]Price EP, Inman-Bamber J, Thiruvenkataswamy V, Huygens F, Giffard PM: Computer-aided identification of polymorphism sets diagnostic for groups of bacterial and viral genetic variants. BMC Bioinforma 2007, 8:278. BioMed Central Full Text
  • [35]Hartl D, Clark A: Principles of population genetics. 4th edition. Sunderland, Massachusetts, USA: Sinauer Associates; 2007.
  • [36]Chakraborty R: Sample-size requirements for addressing the population genetic issues of forensic use of DNA typing. Hum Biol 1992, 64(2):141-159.
  • [37]Kalinowski ST: Do polymorphic loci require large sample sizes to estimate genetic distances? Heredity 2005, 94(1):33-36.
  • [38]Van Velzen R, Weitschek E, Felici G, Bakker FT: DNA barcoding of recently diverged species: relative performance of matching methods. PLoS One 2012, 7(1):e30490.
  • [39]Lou M, Golding GB: Assigning sequences to species in the absence of large interspecific differences. Mol Phylogenet Evol 2010, 56(1):187-194.
  • [40]Berlocher SH: Radiation and divergence in the Rhagoletis pomonella species group: inferences from allozymes. Evolution 2000, 54(2):543-557.
  • [41]Bush GL: Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera, Tephritidae). Evolution 1969, 23:237-251.
  • [42]Aluja M, Pinero J, Lopez M, Ruiz C, Zuniga A, Piedra E, Diaz-Fleischer F, Sivinski J: New host plant and distribution records in Mexico for Anastrepha spp., Toxotrypana curvicauda Gerstacker, Rhagoletis zoqui Bush, Rhagoletis sp., and Hexachaeta sp (Diptera : Tephritidae). Proc Entomol Soc Wash 2000, 102(4):802-815.
  • [43]Boyce AM: The diapause phenomenon in insects, with special reference to Rhagoletis completa Cresson. J Econ Entomol 1931, 24:1018-1024.
  • [44]Smith JJ, Bush GL: Phylogeny of the genus Rhagoletis (Diptera: Tephritidae) inferred from DNA sequences of mitochondrial cytochrome oxidase II. Mol Phylogenet Evol 1997, 7(1):33-43.
  • [45]Funk DJ, Omland KE: Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 2003, 34:397-423.
  • [46]Linnen CR, Farrell BD: Mitonuclear discordance is caused by rampant mitochondrial introgression in Neodiprion (Hymenoptera: Diprionidae) sawflies. Evolution 2007, 61(6):1417-1438.
  • [47]Sanchez-Guillen RA, Wellenreuther M, Cordero-Rivera A, Hansson B: Introgression and rapid species turnover in sympatric damselflies. BMC Evol Biol 2011, 11:210. BioMed Central Full Text
  • [48]Ceballos G, Arroyo-Cabrales J, Ponce E: Effects of Pleistocene environmental changes on the distribution and community structure of the mammalian fauna of Mexico. Quaternary Res 2010, 73(3):464-473.
  • [49]Schliserman P, Ovruski S, Colin C, Norrbom AL, Aluja M: First report of Juglans australis (Juglandaceae) as a natural host plant for Anastrepha schultzi (Diptera : Tephritidae) with notes on probable parasitism by Doryctobracon areolatus, D-Brasiliensis, Opius bellus (Braconidae) and Aganaspis pelleranoi (Figitidae). Fla Entomol 2004, 87(4):597-599.
  • [50]Smith-Caldas MRB MB, Silva JG, Zucchi RA: Phylogenetic relationships among species of the fraterculus group (Anastrepha: Diptera: Tephritidae) inferred from DNA sequences of mitochondrial cytochrome oxidase 1. Neotrop Entomol 2001, 30:565-573.
  • [51]Caceres C, Segura DF, Vera MT, Wornoayporn V, Cladera JL, Sapountzis P, Bourtzis K, Zacharopoulou A, Robinson AS: Incipient speciation revealed in Anastrepha fraterculus (Diptera; Tephritidae) by studies on mating compatibility, sex pheromones, hybridization, and cytology. Biol J Linnean Soc 2009, 97:152-165.
  • [52]Aluja M, Rull J, Perez-Staples D, Diaz-Fleischer F, Sivinski J: Random mating among Anastrepha ludens (Diptera: Tephritidae) adults of geographically distant and ecologically distinct populations in Mexico. Bull Entomol Res 2009, 99(2):207-214.
  • [53]Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W: Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 2004, 101(41):14812-14817.
  • [54]Prado BR, Pozo C, Valdez-Moreno M, Hebert PD: Beyond the colours: discovering hidden diversity in the Nymphalidae of the Yucatan Peninsula in Mexico through DNA barcoding. PLoS One 2011, 6(11):e27776.
  • [55]Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PD: DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc Natl Acad Sci USA 2006, 103(10):3657-3662.
  • [56]Nakahara SMM: Phylogenetic analyses of Bactrocera fruit flies (Diptera: Tephritidae) based on nucleotide sequences of the mitochondrial COI and COII genes. Res Bull Plant Prot Japan 2008, 44:1-12.
  • [57]Zhang BLY, Wu WX, Wang ZL: Molecular phylogeny of Bactrocera species (Diptera: Tephritidae: Dacini) inferred from mitochondrial sequences of 16s rDNA and COI sequences. Fla Entomol 2010, 93:369-377.
  • [58]Goergen G, Vayssières J-F, Gnanvossou D, Tindo M: Bactrocera invadens (Diptera: Tephritidae), a new invasive fruit fly pest for the Afrotropical region: host plant range and distribution in West and Central Africa. Environ Entomol 2011, 40(4):844-854.
  • [59]Krosch MN, Schutze MK, Armstrong KF, Boontop Y, Boykin LM, Chapman TA, Englezou A, Cameron SL, Clarke AR: Piecing together an integrative taxonomic puzzle: microsatellite, wing shape and aedeagus length analyses of Bactrocera dorsalis s.l.(Diptera: Tephritidae) find no evidence of multiple lineages in a proposed contact zone along the Thai/Malay Peninsula. Syst Entomol 2013, 38(1):2-13.
  • [60]Khamis FM, Masiga DK, Mohamed SA, Salifu D, De Meyer M, Ekesi S: Taxonomic identity of the invasive fruit fly pest, Bactrocera invadens: concordance in morphometry and DNA barcoding. PLoS One 2012, 7(9):e44862.
  • [61]Schutze MK, Krosch MN, Armstrong KF, Chapman TA, Englezou A, Chomic A, Cameron SL, Hailstones D, Clarke AR: Population structure of Bactrocera dorsalis s.s., B. papayae and B. philippinensis (Diptera: Tephritidae) in southeast Asia: evidence for a single species hypothesis using mitochondrial DNA and wing-shape data. BMC Evol Biol 2012, 12:130. BioMed Central Full Text
  • [62]Clarke AR, Powell KS, Weldon CW, Taylor PW: The ecology of Bactrocera tryoni (Diptera: Tephritidae): what do we know to assist pest management? Ann Appl Biol 2011, 158:26-55.
  • [63]Frey JE, Pfunder M: Molecular techniques for identification of quarantine insects and mites: The potential of microarrays. Molecular diagnostics: Current technology 2006.
  • [64]Barr NB, Islam MS, De Meyer M, McPheron BA: Molecular identification of Ceratitis capitata (Diptera: Tephritidae) using DNA sequences of the COI barcode region. Ann Entomol Soc Am 2012, 105(2):339-350.
  • [65]Reid BN, Le M, McCord WP, Iverson JB, Georges A, Bergmann T, Amato G, Desalle R, Naro-Maciel E: Comparing and combining distance-based and character-based approaches for barcoding turtles. Mol Ecol Resour 2011, 11(6):956-967.
  • [66]Chua T, Song B, Chong Y: Development of allele-specific single-nucleotide polymorphism-based polymerase chain reaction markers in cytochrome oxidase I for the differentiation of Bactrocera papayae and Bactrocera carambolae (Diptera: Tephritidae). J Econ Entomol 2010, 103(6):1994-1999.
  • [67]Mantel N: The detection of disease clustering and a generalized regression approach. Cancer Res 1967, 27(2):209-220.
  • [68]Kawasaki ES: Sample preparation from blood, cells and other fluids. In PCR protocols a guide to methods and applications. Edited by Innis MA, Gelfand DH, Sninsky JJ, White TJ. New York: Academic; 1990:145-152.
  • [69]Simon CFF, Beckenbach A, Crespi B, Liu H, Floors P: Evolution, weighing, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 1994, 87:651-701.
  • [70]Simon C, Buckley TR, Frati F, Stewart JB, Beckenbach AT: Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annu Rev Ecol Evol Syst 2006, 37:545-579.
  • [71]Drummond AJ AB, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A: Geneious. 47th edition. 2009. [http://www.geneious.com/ webcite]
  • [72]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [73]Tamura K, Nei M: Estimation of the number of nucleotide substitutions in the control region of Mitochondrial-DNA in humans and chimpanzees. Mol Biol Evol 1993, 10(3):512-526.
  • [74]Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4(4):406-425.
  • [75]Felsenstein J: Confidence-limits on phylogenies-an approach using the bootstrap. Evolution 1985, 39(4):783-791.
  • [76]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17(8):754-755.
  • [77]Lim GS, Balke M, Meier R: Determining species boundaries in a world full of rarity: singletons, species delimitation methods. Syst Biol 2012, 61(1):165-169.
  • [78]Lefebure T, Douady CJ, Gouy M, Gibert J: Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Mol Phylogenet Evol 2006, 40(2):435-447.
  • [79]Meyer CP, Paulay G: DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 2005, 3(12):e422.
  • [80]Virgilio M, Jordaens K, Breman FC, Backeljau T, De Meyer M: Identifying insects with incomplete DNA barcode libraries, African fruit flies (Diptera: Tephritidae) as a test case. PLoS One 2012, 7(2):e31581.
  • [81]Excoffier L, Smouse PE: Using allele frequencies and geographic subdivision to reconstruct gene trees within a species-molecular variance parsimony. Genetics 1994, 136(1):343-359.
  • [82]Excoffier L, Laval G, Schneider S: Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform 2005, 1:47-50.
  • [83]Teacher AGF, Griffiths DJ: HapStar: automated haplotype network layout and visualization. Mol Ecol Resour 2011, 11(1):151-153.
  文献评价指标  
  下载次数:34次 浏览次数:11次