期刊论文详细信息
BMC Neuroscience
Common brain activations for painful and non-painful aversive stimuli
Georg Northoff1  Dave J Hayes1 
[1]Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, K1Z 7K4, Canada
关键词: Animal models;    Neuroimaging;    Pain;    Aversion;    Translational;    Meta-analysis;   
Others  :  1170690
DOI  :  10.1186/1471-2202-13-60
 received in 2012-02-20, accepted in 2012-04-18,  发布年份 2012
【 摘 要 】

Background

Identification of potentially harmful stimuli is necessary for the well-being and self-preservation of all organisms. However, the neural substrates involved in the processing of aversive stimuli are not well understood. For instance, painful and non-painful aversive stimuli are largely thought to activate different neural networks. However, it is presently unclear whether there is a common aversion-related network of brain regions responsible for the basic processing of aversive stimuli. To help clarify this issue, this report used a cross-species translational approach in humans (i.e. meta-analysis) and rodents (i.e. systematic review of functional neuroanatomy).

Results

Animal and human data combined to show a core aversion-related network, consisting of similar cortical (i.e. MCC, PCC, AI, DMPFC, RTG, SMA, VLOFC; see results section or abbreviation section for full names) and subcortical (i.e. Amyg, BNST, DS, Hab, Hipp/Parahipp, Hyp, NAc, NTS, PAG, PBN, raphe, septal nuclei, Thal, LC, midbrain) regions. In addition, a number of regions appeared to be more involved in pain-related (e.g. sensory cortex) or non-pain-related (e.g. amygdala) aversive processing.

Conclusions

This investigation suggests that aversive processing, at the most basic level, relies on similar neural substrates, and that differential responses may be due, in part, to the recruitment of additional structures as well as the spatio-temporal dynamic activity of the network. This network perspective may provide a clearer understanding of why components of this circuit appear dysfunctional in some psychiatric and pain-related disorders.

【 授权许可】

   
2012 Hayes and Northoff; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 1. 30KB Image download
Figure 3. 34KB Image download
Figure 2. 63KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 1.

【 参考文献 】
  • [1]Ardiel EL, Rankin CH: An elegant mind: learning and memory in Caenorhabditis elegans. Learn Mem 2010, 17(4):191-201.
  • [2]Glanzman DL: Associative learning: Hebbian flies. Curr Biol 2005, 15(11):R416-419.
  • [3]Seymour B, Singer T, Dolan R: The neurobiology of punishment. Nat Rev Neurosci 2007, 8(4):300-311.
  • [4]Wise RA: Dopamine, learning and motivation. Nat Rev Neurosci 2004, 5(6):483-494.
  • [5]Hayes DJ, Northoff G: Identifying a network of brain regions involved in aversion-related processing: a cross-species translational investigation. Front Integr Neurosci 2011, 5:49.
  • [6]Apkarian AV, Bushnell MC, Treede RD, Zubieta JK: Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 2005, 9(4):463-484.
  • [7]Minami M: Neuronal mechanisms for pain-induced aversion behavioral studies using a conditioned place aversion test. Int Rev Neurobiol 2009, 85:135-144.
  • [8]Oertel BG, Preibisch C, Wallenhorst T, Hummel T, Geisslinger G, Lanfermann H, Lotsch J: Differential opioid action on sensory and affective cerebral pain processing. Clin Pharmacol Ther 2008, 83(4):577-588.
  • [9]Tracey I: Imaging pain. Br J Anaesth 2008, 101(1):32-39.
  • [10]Melzack R: Pain–an overview. Acta Anaesthesiol Scand 1999, 43(9):880-884.
  • [11]Iannetti GD, Mouraux A: From the neuromatrix to the pain matrix (and back). Exp Brain Res 2010, 205(1):1-12.
  • [12]Mouraux A, Diukova A, Lee MC, Wise RG, Iannetti GD: A multisensory investigation of the functional significance of the "pain matrix". NeuroImage 2011, 54(3):2237-2249.
  • [13]Downar J, Mikulis DJ, Davis KD: Neural correlates of the prolonged salience of painful stimulation. NeuroImage 2003, 20(3):1540-1551.
  • [14]Giordano J, Abramson K, Boswell MV: Pain assessment: subjectivity, objectivity, and the use of neurotechnology. Pain Physician 2010, 13(4):305-315.
  • [15]Rolls ET, Grabenhorst F, Parris BA: Warm pleasant feelings in the brain. NeuroImage 2008, 41(4):1504-1513.
  • [16]Meriau K, Wartenburger I, Kazzer P, Prehn K, Villringer A, van der Meer E, Heekeren HR: Insular activity during passive viewing of aversive stimuli reflects individual differences in state negative affect. Brain Cogn 2009, 69(1):73-80.
  • [17]Walker DL, Toufexis DJ, Davis M: Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 2003, 463(1–3):199-216.
  • [18]Jhou T: Neural mechanisms of freezing and passive aversive behaviors. J Comp Neurol 2005, 493(1):111-114.
  • [19]Misslin R: The defense system of fear: behavior and neurocircuitry. Neurophysiol Clin 2003, 33(2):55-66.
  • [20]Carlezon WA, Thomas MJ: Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 2009, 56(Suppl 1):122-132.
  • [21]Wise RA: Brain reward circuitry: insights from unsensed incentives. Neuron 2002, 36(2):229-240.
  • [22]Breiter HC, Rosen BR: Functional magnetic resonance imaging of brain reward circuitry in the human. Ann N Y Acad Sci 1999, 877:523-547.
  • [23]Ikemoto S: Brain reward circuitry beyond the mesolimbic dopamine system: A neurobiological theory. Neurosci Biobehav Rev 2010, 35(2):129-150.
  • [24]Duerden EG, Albanese MC: Localization of pain-related brain activation: A meta-analysis of neuroimaging data. Hum Brain Mapp 2011. [Epub ahead of print]
  • [25]Sandner G, Oberling P, Silveira MC, Di Scala G, Rocha B, Bagri A, Depoortere R: What brain structures are active during emotions? Effects of brain stimulation elicited aversion on c-fos immunoreactivity and behavior. Behav Brain Res 1993, 58(1–2):9-18.
  • [26]Wager TD, Lindquist MA, Nichols TE, Kober H, Van Snellenberg JX: Evaluating the consistency and specificity of neuroimaging data using meta-analysis. NeuroImage 2009, 45(1 Suppl):S210-221.
  • [27]Devonshire IM, Papadakis NG, Port M, Berwick J, Kennerley AJ, Mayhew JE, Overton PG: Neurovascular coupling is brain region-dependent. NeuroImage 2012, 59:1997-2006.
  • [28]Nichols T, Brett M, Andersson J, Wager T, Poline JB: Valid conjunction inference with the minimum statistic. NeuroImage 2005, 25(3):653-660.
  • [29]Krebs RM, Heipertz D, Schuetze H, Duzel E: Novelty increases the mesolimbic functional connectivity of the substantia nigra/ventral tegmental area (SN/VTA) during reward anticipation: Evidence from high-resolution fMRI. NeuroImage 2011, 58(2):647-655.
  • [30]Villemure C, Bushnell MC: Mood influences supraspinal pain processing separately from attention. J Neurosci 2009, 29(3):705-715.
  • [31]Strigo IA, Duncan GH, Boivin M, Bushnell MC: Differentiation of visceral and cutaneous pain in the human brain. J Neurophysiol 2003, 89(6):3294-3303.
  • [32]Shih YY, Chiang YC, Chen JC, Huang CH, Chen YY, Liu RS, Chang C, Jaw FS: Brain nociceptive imaging in rats using (18)f-fluorodeoxyglucose small-animal positron emission tomography. Neuroscience 2008, 155(4):1221-1226.
  • [33]Hess A, Sergejeva M, Budinsky L, Zeilhofer HU, Brune K: Imaging of hyperalgesia in rats by functional MRI. Eur J Pain 2007, 11(1):109-119.
  • [34]Logothetis NK: What we can do and what we cannot do with fMRI. Nature 2008, 453(7197):869-878.
  • [35]Fairhurst M, Wiech K, Dunckley P, Tracey I: Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 2007, 128(1–2):101-110.
  • [36]Becerra L, Breiter HC, Wise R, Gonzalez RG, Borsook D: Reward circuitry activation by noxious thermal stimuli. Neuron 2001, 32(5):927-946.
  • [37]Levita L, Hare TA, Voss HU, Glover G, Ballon DJ, Casey BJ: The bivalent side of the nucleus accumbens. NeuroImage 2009, 44(3):1178-1187.
  • [38]Klucken T, Kagerer S, Schweckendiek J, Tabbert K, Vaitl D, Stark R: Neural, electrodermal and behavioral response patterns in contingency aware and unaware subjects during a picture-picture conditioning paradigm. Neuroscience 2009, 158(2):721-731.
  • [39]Lim LW, Temel Y, Visser-Vandewalle V, Blokland A, Steinbusch H: Fos immunoreactivity in the rat forebrain induced by electrical stimulation of the dorsolateral periaqueductal gray matter. J Chem Neuroanat 2009, 38(2):83-96.
  • [40]Mobbs D, Petrovic P, Marchant JL, Hassabis D, Weiskopf N, Seymour B, Dolan RJ, Frith CD: When fear is near: threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science 2007, 317(5841):1079-1083.
  • [41]Day HE, Masini CV, Campeau S: The pattern of brain c-fos mRNA induced by a component of fox odor, 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), in rats, suggests both systemic and processive stress characteristics. Brain Res 2004, 1025(1–2):139-151.
  • [42]Eisenberger NI, Gable SL, Lieberman MD: Functional magnetic resonance imaging responses relate to differences in real-world social experience. Emotion 2007, 7(4):745-754.
  • [43]Nikulina EM, Arrillaga-Romany I, Miczek KA, Hammer RP: Long-lasting alteration in mesocorticolimbic structures after repeated social defeat stress in rats: time course of mu-opioid receptor mRNA and FosB/DeltaFosB immunoreactivity. Eur J Neurosci 2008, 27(9):2272-2284.
  • [44]Talbot JD, Marrett S, Evans AC, Meyer E, Bushnell MC, Duncan GH: Multiple representations of pain in human cerebral cortex. Science 1991, 251(4999):1355-1358.
  • [45]Jones A: The pain matrix and neuropathic pain. Brain 1998, 121(Pt 5):783-784.
  • [46]Derbyshire SW, Jones AK, Gyulai F, Clark S, Townsend D, Firestone LL: Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain 1997, 73(3):431-445.
  • [47]Rainville P: Brain mechanisms of pain affect and pain modulation. Curr Opin Neurobiol 2002, 12(2):195-204.
  • [48]Moulton EA, Elman I, Pendse G, Schmahmann J, Becerra L, Borsook D: Aversion-related circuitry in the cerebellum: responses to noxious heat and unpleasant images. J Neurosci 2011, 31(10):3795-3804.
  • [49]Bellebaum C, Daum I: Mechanisms of cerebellar involvement in associative learning. Cortex 2011, 47(1):128-136.
  • [50]Mediavilla C, Molina F, Puerto A: Retention of concurrent taste aversion learning after electrolytic lesioning of the interpositus-dentate region of the cerebellum. Brain Res 2000, 868(2):329-337.
  • [51]Simons RF: The way of our errors: theme and variations. Psychophysiology 2010, 47(1):1-14.
  • [52]Bossaerts P: Risk and risk prediction error signals in anterior insula. Brain Struct Funct 2010, 214(5–6):645-653.
  • [53]Haber SN, Knutson B: The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 2010, 35(1):4-26.
  • [54]Wittmann M, Lovero KL, Lane SD, Paulus MP: Now or later? Striatum and insula activation to immediate versus delayed rewards. J Neurosci Psychol Econ 2010, 3(1):15-26.
  • [55]Walton ME, Croxson PL, Behrens TE, Kennerley SW, Rushworth MF: Adaptive decision making and value in the anterior cingulate cortex. NeuroImage 2007, 36(Suppl 2):T142-154.
  • [56]Wiech K, Lin CS, Brodersen KH, Bingel U, Ploner M, Tracey I: Anterior insula integrates information about salience into perceptual decisions about pain. J Neurosci 2010, 30(48):16324-16331.
  • [57]Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, Davidson RJ: The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev Neurosci 2011, 12(3):154-167.
  • [58]Alexander WH, Brown JW: Medial prefrontal cortex as an action-outcome predictor. Nat Neurosci 2011, 14(10):1338-1344.
  • [59]Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB: A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 2010, 214(5–6):519-534.
  • [60]Maddock RJ: The retrosplenial cortex and emotion: new insights from functional neuroimaging of the human brain. Trends Neurosci 1999, 22(7):310-316.
  • [61]Small DM, Zatorre RJ, Dagher A, Evans AC, Jones-Gotman M: Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 2001, 124(Pt 9):1720-1733.
  • [62]Sawamoto N, Honda M, Okada T, Hanakawa T, Kanda M, Fukuyama H, Konishi J, Shibasaki H: Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic resonance imaging study. J Neurosci 2000, 20(19):7438-7445.
  • [63]Atlas LY, Bolger N, Lindquist MA, Wager TD: Brain mediators of predictive cue effects on perceived pain. J Neurosci 2010, 30(39):12964-12977.
  • [64]Taylor KS, Seminowicz DA, Davis KD: Two systems of resting state connectivity between the insula and cingulate cortex. Hum Brain Mapp 2009, 30(9):2731-2745.
  • [65]Sagaspe P, Schwartz S, Vuilleumier P: Fear and stop: a role for the amygdala in motor inhibition by emotional signals. NeuroImage 2011, 55(4):1825-1835.
  • [66]Schultz W, Tremblay L, Hollerman JR: Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb Cortex 2000, 10(3):272-284.
  • [67]Sharot T, Shiner T, Dolan RJ: Experience and choice shape expected aversive outcomes. J Neurosci 2010, 30(27):9209-9215.
  • [68]Sanders KH, Klein CE, Mayor TE, Heym C, Handwerker HO: Differential effects of noxious and non-noxious input on neurones according to location in ventral periaqueductal grey or dorsal raphe nucleus. Brain Res 1980, 186(1):83-97.
  • [69]Schenberg LC, Povoa RM, Costa AL, Caldellas AV, Tufik S, Bittencourt AS: Functional specializations within the tectum defense systems of the rat. Neurosci Biobehav Rev 2005, 29(8):1279-1298.
  • [70]Hadjipavlou G, Dunckley P, Behrens TE, Tracey I: Determining anatomical connectivities between cortical and brainstem pain processing regions in humans: a diffusion tensor imaging study in healthy controls. Pain 2006, 123(1–2):169-178.
  • [71]Linnman C, Moulton EA, Barmettler G, Becerra L, Borsook D: Neuroimaging of the periaqueductal gray: state of the field. NeuroImage 2012, 60(1):505-522.
  • [72]Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ: Neural systems supporting interoceptive awareness. Nat Neurosci 2004, 7(2):189-195.
  • [73]Wang Z, Guo Y, Bradesi S, Labus JS, Maarek JM, Lee K, Winchester WJ, Mayer EA, Holschneider DP: Sex differences in functional brain activation during noxious visceral stimulation in rats. Pain 2009, 145(1-2):120-128.
  • [74]Menon V, Uddin LQ: Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 2010, 214(5–6):655-667.
  • [75]Hayes DJ, Huxtable AG: Interpreting deactivations in neuroimaging. Front Psychol 2012, 3:27.
  • [76]Northoff G, Duncan NW, Hayes DJ: The brain and its resting state activity–experimental and methodological implications. Prog Neurobiol 2010, 92(4):593-600.
  • [77]Inui-Yamamoto C, Yoshioka Y, Inui T, Sasaki KS, Ooi Y, Ueda K, Seiyama A, Ohzawa I: The brain mapping of the retrieval of conditioned taste aversion memory using manganese-enhanced magnetic resonance imaging in rats. Neuroscience 2010, 167(2):199-204.
  • [78]Shih YY, Chen YY, Chen CC, Chen JC, Chang C, Jaw FS: Whole-brain functional magnetic resonance imaging mapping of acute nociceptive responses induced by formalin in rats using atlas registration-based event-related analysis. J Neurosci Res 2008, 86(8):1801-1811.
  • [79]Wiebking C, de Greck M, Duncan NW, Heinzel A, Tempelmann C, Northoff G: Are emotions associated with activity during rest or interoception? An exploratory fMRI study in healthy subjects. Neurosci Lett 2011, 491(1):87-92.
  • [80]Liu X, Hairston J, Schrier M, Fan J: Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 2011, 35(5):1219-1236.
  • [81]Hayes DJ, Hoang J, Greenshaw AJ: The role of nucleus accumbens shell GABA receptors on ventral tegmental area intracranial self-stimulation and a potential role for the 5-HT2C receptor. J Psychopharmacol 2011, 25(12):1661-1675.
  • [82]Leknes S, Tracey I: A common neurobiology for pain and pleasure. Nat Rev Neurosci 2008, 9(4):314-320.
  • [83]Lammel S, Ion DI, Roeper J, Malenka RC: Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 2011, 70(5):855-862.
  • [84]Hikida T, Kimura K, Wada N, Funabiki K, Nakanishi S: Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 2010, 66(6):896-907.
  • [85]Kawasaki H, Adolphs R, Oya H, Kovach C, Damasio H, Kaufman O, Howard M: Analysis of single-unit responses to emotional scenes in human ventromedial prefrontal cortex. J Cogn Neurosci 2005, 17(10):1509-1518.
  • [86]Madan CR, Spetch ML: Is the enhancement of memory due to reward driven by value or salience? Acta Psychol (Amst) 2012, 139(2):343-349.
  • [87]Nakagawa T, Katsuya A, Tanimoto S, Yamamoto J, Yamauchi Y, Minami M, Satoh M: Differential patterns of c-fos mRNA expression in the amygdaloid nuclei induced by chemical somatic and visceral noxious stimuli in rats. Neurosci Lett 2003, 344(3):197-200.
  • [88]Rottschy C, Langner R, Dogan I, Reetz K, Laird AR, Schulz JB, Fox PT, Eickhoff SB: Modelling neural correlates of working memory: A coordinate-based meta-analysis. NeuroImage 2011, 60(1):830-846.
  • [89]Calandreau L, Jaffard R, Desmedt A: Dissociated roles for the lateral and medial septum in elemental and contextual fear conditioning. Learn Mem 2007, 14(6):422-429.
  • [90]Yasoshima Y, Scott TR, Yamamoto T: Differential activation of anterior and midline thalamic nuclei following retrieval of aversively motivated learning tasks. Neuroscience 2007, 146(3):922-930.
  • [91]Straube T, Weiss T, Mentzel HJ, Miltner WH: Time course of amygdala activation during aversive conditioning depends on attention. NeuroImage 2007, 34(1):462-469.
  • [92]Marschner A, Kalisch R, Vervliet B, Vansteenwegen D, Buchel C: Dissociable roles for the hippocampus and the amygdala in human cued versus context fear conditioning. J Neurosci 2008, 28(36):9030-9036.
  • [93]Strigo IA, Simmons AN, Matthews SC, Craig AD: The relationship between amygdala activation and passive exposure time to an aversive cue during a continuous performance task. PLoS One 2010, 5(11):e15093.
  • [94]Ziv M, Tomer R, Defrin R, Hendler T: Individual sensitivity to pain expectancy is related to differential activation of the hippocampus and amygdala. Hum Brain Mapp 2010, 31(2):326-338.
  • [95]Dube AA, Duquette M, Roy M, Lepore F, Duncan G, Rainville P: Brain activity associated with the electrodermal reactivity to acute heat pain. NeuroImage 2009, 45(1):169-180.
  • [96]Guimarais M, Gregorio A, Cruz A, Guyon N, Moita MA: Time determines the neural circuit underlying associative fear learning. Front Behav Neurosci 2011, 5:89.
  • [97]Herwig U, Abler B, Walter H, Erk S: Expecting unpleasant stimuli–an fMRI study. Psychiatry Res 2007, 154(1):1-12.
  • [98]Jensen J, McIntosh AR, Crawley AP, Mikulis DJ, Remington G, Kapur S: Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron 2003, 40(6):1251-1257.
  • [99]Radwanska K, Nikolaev E, Knapska E, Kaczmarek L: Differential response of two subdivisions of lateral amygdala to aversive conditioning as revealed by c-Fos and P-ERK mapping. NeuroReport 2002, 13(17):2241-2246.
  • [100]Badowska-Szalewska E, Ludkiewicz B, Domaradzka-Pytel B, Dziewiatkowski J, Spodnik JH, Morys J: The immunoreactivity of c-Fos, NGF and its receptor TrkA after open-field exposure in the central and medial nuclei of the rat amygdala. Folia Morphol (Warsz) 2006, 65(2):145-151.
  • [101]Calfa G, Bussolino D, Molina VA: Involvement of the lateral septum and the ventral Hippocampus in the emotional sequelae induced by social defeat: role of glucocorticoid receptors. Behav Brain Res 2007, 181(1):23-34.
  • [102]Hoffman KL, Gothard KM, Schmid MC, Logothetis NK: Facial-expression and gaze-selective responses in the monkey amygdala. Curr Biol 2007, 17(9):766-772.
  • [103]Mediavilla C, Bernal A, Puerto A: Taste aversion learning induced c-fos expression in the nucleus of the solitary tract after spontaneous flavor intake: role of the inter-stimulus interval. Neurobiol Learn Mem 2007, 88(2):264-268.
  • [104]Baumgartel K, Genoux D, Welzl H, Tweedie-Cullen RY, Koshibu K, Livingstone-Zatchej M, Mamie C, Mansuy IM: Control of the establishment of aversive memory by calcineurin and Zif268. Nat Neurosci 2008, 11(5):572-578.
  • [105]Kwon B, Goltz M, Houpt TA: Expression of AP-1 family transcription factors in the amygdala during conditioned taste aversion learning: role for Fra-2. Brain Res 2008, 1207:128-141.
  • [106]Butler RK, Sharko AC, Oliver EM, Brito-Vargas P, Kaigler KF, Fadel JR, Wilson MA: Activation of phenotypically-distinct neuronal subpopulations of the rat amygdala following exposure to predator odor. Neuroscience 2011, 175:133-144.
  • [107]Culman J, Das G, Ohlendorf C, Haass M, Maser-Gluth C, Zuhayra M, Zhao Y, Itoi K: Blockade of tachykinin NK1/NK2 receptors in the brain attenuates the activation of corticotrophin-releasing hormone neurones in the hypothalamic paraventricular nucleus and the sympathoadrenal and pituitary-adrenal responses to formalin-induced pain in the rat. J Neuroendocrinol 2010, 22(5):467-476.
  • [108]Hagiwara H, Kimura F, Mitsushima D, Funabashi T: Formalin-induced nociceptive behavior and c-Fos expression in middle-aged female rats. Physiol Behav 2010, 100(2):101-104.
  • [109]Vrang N, Phifer CB, Corkern MM, Berthoud HR: Gastric distension induces c-Fos in medullary GLP-1/2-containing neurons. Am J Physiol Regul Integr Comp Physiol 2003, 285(2):R470-478.
  • [110]Shih YY, Chen CC, Shyu BC, Lin ZJ, Chiang YC, Jaw FS, Chen YY, Chang C: A new scenario for negative functional magnetic resonance imaging signals: endogenous neurotransmission. J Neurosci 2009, 29(10):3036-3044.
  • [111]Edelsbrunner ME, Nakano M, Holzer P: Afferent signalling from the acid-challenged rat stomach is inhibited and gastric acid elimination is enhanced by lafutidine. BMC Gastroenterol 2009, 9:40. BioMed Central Full Text
  • [112]Ren Y, Zhang L, Lu Y, Yang H, Westlund KN: Central lateral thalamic neurons receive noxious visceral mechanical and chemical input in rats. J Neurophysiol 2009, 102(1):244-258.
  • [113]Hayashi T, Miyata M, Nagata T, Izawa Y, Kawakami Y: Intracerebroventricular fluvoxamine administration inhibited pain behavior but increased Fos expression in affective pain pathways. Pharmacol Biochem Behav 2009, 91(3):441-446.
  • [114]Novikova NS, Kazakova TB, Rogers V, Korneva EA: Expression of the c-Fos gene in the rat hypothalamus in electrical pain stimulation and UHF stimulation of the skin. Neurosci Behav Physiol 2008, 38(4):415-420.
  • [115]Morano TJ, Bailey NJ, Cahill CM, Dumont EC: Nuclei-and condition-specific responses to pain in the bed nucleus of the stria terminalis. Prog Neuropsychopharmacol Biol Psychiatry 2008, 32(3):643-650.
  • [116]Gavrilov YV, Perekrest SV, Novikova NS: Intracellular expression of c-Fos protein in various structures of the hypothalamus in electrical pain stimulation and administration of antigens. Neurosci Behav Physiol 2008, 38(1):87-92.
  • [117]Li L, Ding J, Ren Z, Han Q, Hu G, Xiao M: Expression and colocalization of NADPH-diaphorase and Fos in the subnuclei of the parabrachial nucleus in rats following visceral noxious stimulation. Brain Res 2006, 1114(1):41-52.
  • [118]Coizet V, Dommett EJ, Redgrave P, Overton PG: Nociceptive responses of midbrain dopaminergic neurones are modulated by the superior colliculus in the rat. Neuroscience 2006, 139(4):1479-1493.
  • [119]Costafreda SG, Brammer MJ, David AS, Fu CH: Predictors of amygdala activation during the processing of emotional stimuli: a meta-analysis of 385 PET and fMRI studies. Brain Res Rev 2008, 58(1):57-70.
  • [120]Mechias ML, Etkin A, Kalisch R: A meta-analysis of instructed fear studies: implications for conscious appraisal of threat. NeuroImage 2010, 49(2):1760-1768.
  • [121]Fan Y, Duncan NW, de Greck M, Northoff G: Is there a core neural network in empathy? An fMRI based quantitative meta-analysis. Neurosci Biobehav Rev 2011, 35(3):903-911.
  • [122]Kober H, Barrett LF, Joseph J, Bliss-Moreau E, Lindquist K, Wager TD: Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies. NeuroImage 2008, 42(2):998-1031.
  • [123]Delgado MR, Jou RL, Phelps EA: Neural systems underlying aversive conditioning in humans with primary and secondary reinforcers. Front Neurosci 2011, 5:71.
  • [124]Johnson LR, Hou M, Prager EM, Ledoux JE: Regulation of the Fear Network by Mediators of Stress: Norepinephrine Alters the Balance between Cortical and Subcortical Afferent Excitation of the Lateral Amygdala. Front Behav Neurosci 2011, 5:23.
  • [125]Vogt BA: Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci 2005, 6(7):533-544.
  • [126]Salimi-Khorshidi G, Smith SM, Keltner JR, Wager TD, Nichols TE: Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies. NeuroImage 2009, 45(3):810-823.
  • [127]Salchner P, Sartori SB, Sinner C, Wigger A, Frank E, Landgraf R, Singewald N: Airjet and FG-7142-induced Fos expression differs in rats selectively bred for high and low anxiety-related behavior. Neuropharmacology 2006, 50(8):1048-1058.
  • [128]Panksepp J: Affectvie neuroscience: the foundations of human and animal emotions. Oxford University Press, New York; 1998.
  • [129]Dalley JW, Cardinal RN, Robbins TW: Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 2004, 28(7):771-784.
  • [130]Heidbreder CA, Groenewegen HJ: The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 2003, 27(6):555-579.
  • [131]Ongur D, Price JL: The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 2000, 10(3):206-219.
  • [132]Shumake J, Gonzalez-Lima F: Brain systems underlying susceptibility to helplessness and depression. Behav Cogn Neurosci Rev 2003, 2(3):198-221.
  • [133]Vertes RP: Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 2006, 142(1):1-20.
  • [134]Albrechet-Souza L, Borelli KG, Carvalho MC, Brandao ML: The anterior cingulate cortex is a target structure for the anxiolytic-like effects of benzodiazepines assessed by repeated exposure to the elevated plus maze and Fos immunoreactivity. Neuroscience 2009, 164:387-397.
  • [135]Baffi JS, Palkovits M: Fine topography of brain areas activated by cold stress. A fos immunohistochemical study in rats. Neuroendocrinology 2000, 72:102-113.
  • [136]Bernstein IL, Koh MT: Molecular signaling during taste aversion learning. Chem Senses 2007, 32:99-103.
  • [137]Chang C, Shyu BC: A fMRI study of brain activations during non-noxious and noxious electrical stimulation of the sciatic nerve of rats. Brain Res 2001, 897:71-81.
  • [138]Chen W, Tenney J, Kulkarni P, King JA: Imaging unconditioned fear response with manganese-enhanced MRI (MEMRI). Neuroimage 2007, 37:221-229.
  • [139]Dardou D, Datiche F, Cattarelli M: Fos and Egr1 expression in the rat brain in response to olfactory cue after taste-potentiated odor aversion retrieval. Learn Mem 2006, 13:150-160.
  • [140]Dardou D, Datiche F, Cattarelli M: Does taste or odor activate the same brain networks after retrieval of taste potentiated odor aversion? Neurobiol Learn Mem 2007, 88:186-197.
  • [141]Dielenberg RA, Hunt GE, McGregor IS: "When a rat smells a cat": the distribution of Fos immunoreactivity in rat brain following exposure to a predatory odor. Neuroscience 2001, 104:1085-1097.
  • [142]Fekete EM, Zhao Y, Li C, Sabino V, Vale WW, Zorrilla EP: Social defeat stress activates medial amygdala cells that express type 2 corticotropin-releasing factor receptor mRNA. Neuroscience 2009, 162:5-13.
  • [143]Ferreira G, Ferry B, Meurisse M, Levy F: Forebrain structures specifically activated by conditioned taste aversion. Behav Neurosci 2006, 120:952-962.
  • [144]Funk D, Amir S: Enhanced fos expression within the primary olfactory and limbic pathways induced by an aversive conditioned odor stimulus. Neuroscience 2000, 98:403-406.
  • [145]Furlong TM, Cole S, Hamlin AS, McNally GP: The role of prefrontal cortex in predictive fear learning. Behav Neurosci 2010, 124:574-586.
  • [146]Garcia-Medina NE, Jimenez-Capdeville ME, Ciucci M, Martinez LM, Delgado JM, Horn CC: Conditioned flavor aversion and brain Fos expression following exposure to arsenic. Toxicology 2007, 235:73-82.
  • [147]Hao S, Dulake M, Espero E, Sternini C, Raybould HE, Rinaman L: Central Fos expression and conditioned flavor avoidance in rats following intragastric administration of bitter taste receptor ligands. Am J Physiol Regul Integr Comp Physiol 2009, 296:R528-536.
  • [148]Jhou TC, Fields HL, Baxter MG, Saper CB, Holland PC: The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 2009, 61:786-800.
  • [149]Johnson PL, Fitz SD, Hollis JH, Moratalla R, Lightman SL, Shekhar A, Lowry CA: Induction of c-Fos in 'panic/defence'-related brain circuits following brief hypercarbic gas exposure. J Psychopharmacol 2010a.
  • [150]Johnson ZV, Revis AA, Burdick MA, Rhodes JS: A similar pattern of neuronal Fos activation in 10 brain regions following exposure to reward- or aversion-associated contextual cues in mice. Physiol Behav 2010, 99:412-418.
  • [151]Koh MT, Bernstein IL: Mapping conditioned taste aversion associations using c-Fos reveals a dynamic role for insular cortex. Behav Neurosci 2005, 119:388-398.
  • [152]Lamprea MR, Cardenas FP, Vianna DM, Castilho VM, Cruz-Morales SE, Brandao ML: The distribution of fos immunoreactivity in rat brain following freezing and escape responses elicited by electrical stimulation of the inferior colliculus. Brain Res 2002, 950:186-194.
  • [153]Lehner M, Taracha E, Skorzewska A, Turzynska D, Sobolewska A, Maciejak P, Szyndler J, Hamed A, Bidzinski A, Wislowska-Stanek A, Plaznik A: Expression of c-Fos and CRF in the brains of rats differing in the strength of a fear response. Behav Brain Res 2008, 188:154-167.
  • [154]Lehner M, Taracha E, Skorzewska A, Wislowska A, Zienowicz M, Maciejak P, Szyndler J, Bidzinski A, Plaznik A: Sensitivity to pain and c-Fos expression in brain structures in rats. Neurosci Lett 2004, 370:74-79.
  • [155]Lei LG, Zhang YQ, Zhao ZQ: Pain-related aversion and Fos expression in the central nervous system in rats. Neuroreport 2004, 15:67-71.
  • [156]Lemos JI, Resstel LB, Guimaraes FS: Involvement of the prelimbic prefrontal cortex on cannabidiol-induced attenuation of contextual conditioned fear in rats. Behav Brain Res 2010, 207:105-111.
  • [157]Lowe AS, Beech JS, Williams SC: Small animal, whole brain fMRI: innocuous and nociceptive forepaw stimulation. Neuroimage 2007, 35:719-728.
  • [158]Malisza KL, Docherty JC: Capsaicin as a source for painful stimulation in functional MRI. J Magn Reson Imaging 2001, 14:341-347.
  • [159]Malisza KL, Gregorash L, Turner A, Foniok T, Stroman PW, Allman AA, Summers R, Wright A: Functional MRI involving painful stimulation of the ankle and the effect of physiotherapy joint mobilization. Magn Reson Imaging 2003, 21:489-496.
  • [160]Malkani S, Rosen JB: Induction of NGFI-B mRNA following contextual fear conditioning and its blockade by diazepam. Brain Res Mol Brain Res 2000, 80:153-165.
  • [161]Martinez RC, Carvalho-Netto EF, Ribeiro-Barbosa ER, Baldo MV, Canteras NS: Amygdalar roles during exposure to a live predator and to a predator-associated context. Neuroscience 2011, 172:314-328.
  • [162]Martinez V, Wang L, Tache Y: Proximal colon distension induces Fos expression in the brain and inhibits gastric emptying through capsaicin-sensitive pathways in conscious rats. Brain Res 2006, 1086:168-180.
  • [163]Mickley GA, Kenmuir CL, McMullen CA, Yocom AM, Valentine EL, Dengler-Crish CM, Weber B, Wellman JA, Remmers-Roeber DR: Dynamic processing of taste aversion extinction in the brain. Brain Res 2004, 1016:79-89.
  • [164]Moylan Governo RJ, Morris PG, Prior MJ, Marsden CA, Chapman V: Capsaicin-evoked brain activation and central sensitization in anaesthetised rats: a functional magnetic resonance imaging study. Pain 2006, 126:35-45.
  • [165]Navarro M, Spray KJ, Cubero I, Thiele TE, Bernstein IL: cFos induction during conditioned taste aversion expression varies with aversion strength. Brain Res 2000, 887:450-453.
  • [166]Nikolaev E, Kaczmarek L, Zhu SW, Winblad B, Mohammed AH: Environmental manipulation differentially alters c-Fos expression in amygdaloid nuclei following aversive conditioning. Brain Res 2002, 957:91-98.
  • [167]Roche M, Johnston P, Mhuircheartaigh ON, Olango WM, Mackie K, Finn DP: Eur J Pain. 2009.
  • [168]Roseboom PH, Nanda SA, Bakshi VP, Trentani A, Newman SM, Kalin NH: Predator threat induces behavioral inhibition, pituitary-adrenal activation and changes in amygdala CRF-binding protein gene expression. Psychoneuroendocrinology 2007, 32:44-55.
  • [169]Sadananda M, Wohr M, Schwarting RK: Playback of 22-kHz and 50-kHz ultrasonic vocalizations induces differential c-fos expression in rat brain. Neurosci Lett 2008, 435:17-23.
  • [170]Shah YB, Haynes L, Prior MJ, Marsden CA, Morris PG, Chapman V: Functional magnetic resonance imaging studies of opioid receptor-mediated modulation of noxious-evoked BOLD contrast in rats. Psychopharmacology (Berl) 2005, 180:761-773.
  • [171]Shih YY, Chang C, Chen JC, Jaw FS: BOLD fMRI mapping of brain responses to nociceptive stimuli in rats under ketamine anesthesia. Med Eng Phys 2008, 30:953-958.
  • [172]Shih YY, Chen YY, Chen JM, Lung Y, Chen JY, Chang C, Chen JC, Jaw FS: Exploring nociceptive response by BOLD fMRI in alpha-chloralose anesthetized rats. Conf Proc IEEE Eng Med Biol Soc 2006, 1:33-36.
  • [173]Shih YY, Wey HY, De La Garza BH, Duong TQ: Striatal and cortical BOLD, blood flow, blood volume, oxygen consumption, and glucose consumption changes in noxious forepaw electrical stimulation. J Cereb Blood Flow Metab 2011, 31:832-841.
  • [174]Sinniger V, Porcher C, Mouchet P, Juhem A, Bonaz B: c-fos and CRF receptor gene transcription in the brain of acetic acid-induced somato-visceral pain in rats. Pain 2004, 110:738-750.
  • [175]St Andre J, Albanos K, Reilly S: C-fos expression in the rat brain following lithium chloride-induced illness. Brain Res 2007, 1135:122-128.
  • [176]Tuor UI, Malisza K, Foniok T, Papadimitropoulos R, Jarmasz M, Somorjai R, Kozlowski P: Functional magnetic resonance imaging in rats subjected to intense electrical and noxious chemical stimulation of the forepaw. Pain 2000, 87:315-324.
  • [177]Vianna DM, Borelli KG, Ferreira-Netto C, Macedo CE, Brandao ML: Fos-like immunoreactive neurons following electrical stimulation of the dorsal periaqueductal gray at freezing and escape thresholds. Brain Res Bull 2003, 62:179-189.
  • [178]Wang L, Martinez V, Larauche M, Tache Y: Proximal colon distension induces Fos expression in oxytocin-, vasopressin-, CRF- and catecholamines-containing neurons in rat brain. Brain Res 2009, 1247:79-91.
  • [179]Wilkins EE, Bernstein IL: Conditioning method determines patterns of c-fos expression following novel taste-illness pairing. Behav Brain Res 2006, 169:93-97.
  • [180]Yasoshima Y, Scott TR, Yamamoto T: Memory-dependent c-Fos expression in the nucleus accumbens and extended amygdala following the expression of a conditioned taste aversive in the rat. Neuroscience 2006, 141:35-45.
  • [181]Yu O, Parizel N, Pain L, Guignard B, Eclancher B, Mauss Y, Grucker D: Texture analysis of brain MRI evidences the amygdala activation by nociceptive stimuli under deep anesthesia in the propofol-formalin rat model. Magn Reson Imaging 2007, 25:144-146.
  • [182]Zanoveli JM, Ferreira-Netto C, Brandao ML: Conditioned place aversion organized in the dorsal periaqueductal gray recruits the laterodorsal nucleus of the thalamus and the basolateral amygdala. Exp Neurol 2007, 208:127-136.
  • [183]Apkarian AV, Gelnar PA, Krauss BR, Szeverenyi NM: Cortical responses to thermal pain depend on stimulus size: a functional MRI study. J Neurophysiol 2000, 83:3113-3122.
  • [184]Becerra L, Iadarola M, Borsook D: CNS activation by noxious heat to the hand or foot: site-dependent delay in sensory but not emotion circuitry. J Neurophysiol 2004, 91:533-541.
  • [185]Casey KL, Morrow TJ, Lorenz J, Minoshima S: Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. J Neurophysiol 2001, 85:951-959.
  • [186]Coghill RC, Sang CN, Maisog JM, Iadarola MJ: Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 1999, 82:1934-1943.
  • [187]Derbyshire SW, Jones AK, Creed F, Starz T, Meltzer CC, Townsend DW, Peterson AM, Firestone L: Cerebral responses to noxious thermal stimulation in chronic low back pain patients and normal controls. Neuroimage 2002, 16:158-168.
  • [188]Derbyshire SW, Whalley MG, Stenger VA, Oakley DA: Cerebral activation during hypnotically induced and imagined pain. Neuroimage 2004, 23:392-401.
  • [189]Dimitrova A, Kolb FP, Elles HG, Maschke M, Gerwig M, Gizewski E, Timmann D: Cerebellar activation during leg withdrawal reflex conditioning: an fMRI study. Clin Neurophysiol 2004, 115:849-857.
  • [190]Gelnar PA, Krauss BR, Sheehe PR, Szeverenyi NM, Apkarian AV: A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. Neuroimage 1999, 10:460-482.
  • [191]Helmchen C, Mohr C, Erdmann C, Petersen D, Nitschke MF: Differential cerebellar activation related to perceived pain intensity during noxious thermal stimulation in humans: a functional magnetic resonance imaging study. Neurosci Lett 2003, 335:202-206.
  • [192]Hofbauer RK, Rainville P, Duncan GH, Bushnell MC: Cortical representation of the sensory dimension of pain. J Neurophysiol 2001, 86:402-411.
  • [193]Kurata J, Thulborn KR, Gyulai FE, Firestone LL: Early decay of pain-related cerebral activation in functional magnetic resonance imaging: comparison with visual and motor tasks. Anesthesiology 2002, 96:35-44.
  • [194]Mohr C, Leyendecker S, Mangels I, Machner B, Sander T, Helmchen C: Central representation of cold-evoked pain relief in capsaicin induced pain: an event-related fMRI study. Pain 2009, 139:416-430.
  • [195]Morrison I, Lloyd D, di Pellegrino G, Roberts N: Vicarious responses to pain in anterior cingulate cortex: is empathy a multisensory issue? Cogn Affect Behav Neurosci 2004, 4:270-278.
  • [196]Niddam DM, Yeh TC, Wu YT, Lee PL, Ho LT, Arendt-Nielsen L, Chen AC, Hsieh JC: Event-related functional MRI study on central representation of acute muscle pain induced by electrical stimulation. Neuroimage 2002, 17:1437-1450.
  • [197]Ochsner KN, Ludlow DH, Knierim K, Hanelin J, Ramachandran T, Glover GC, Mackey SC: Neural correlates of individual differences in pain-related fear and anxiety. Pain 2006, 120:69-77.
  • [198]Petrovic P, Carlsson K, Petersson KM, Hansson P, Ingvar M: Context-dependent deactivation of the amygdala during pain. J Cogn Neurosci 2004, 16:1289-1301.
  • [199]Peyron R, Garcia-Larrea L, Gregoire MC, Costes N, Convers P, Lavenne F, Mauguiere F, Michel D, Laurent B: Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 1999, 122(Pt 9):1765-1780.
  • [200]Rolls ET, Kringelbach ML, de Araujo IE: Different representations of pleasant and unpleasant odours in the human brain. Eur J Neurosci 2003, 18:695-703.
  • [201]Scott DJ, Heitzeg MM, Koeppe RA, Stohler CS, Zubieta JK: Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. J Neurosci 2006, 26:10789-10795.
  • [202]Smith KA, Ploghaus A, Cowen PJ, McCleery JM, Goodwin GM, Smith S, Tracey I, Matthews PM: Cerebellar responses during anticipation of noxious stimuli in subjects recovered from depression. Functional magnetic resonance imaging study. Br J Psychiatry 2002, 181:411-415.
  • [203]Tolle TR, Kaufmann T, Siessmeier T, Lautenbacher S, Berthele A, Munz F, Zieglgansberger W, Willoch F, Schwaiger M, Conrad B, Bartenstein P: Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann Neurol 1999, 45:40-47.
  • [204]Abler B, Erk S, Herwig U, Walter H: Anticipation of aversive stimuli activates extended amygdala in unipolar depression. J Psychiatr Res 2007, 41:511-522.
  • [205]Blood AJ, Zatorre RJ, Bermudez P, Evans AC: Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat Neurosci 1999, 2:382-387.
  • [206]Botvinick M, Jha AP, Bylsma LM, Fabian SA, Solomon PE, Prkachin KM: Viewing facial expressions of pain engages cortical areas involved in the direct experience of pain. Neuroimage 2005, 25:312-319.
  • [207]Buchel C, Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C: Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci 2002, 22:970-976.
  • [208]Buchel C, Dolan RJ, Armony JL, Friston KJ: Amygdala-hippocampal involvement in human aversive trace conditioning revealed through event-related functional magnetic resonance imaging. J Neurosci 1999, 19:10869-10876.
  • [209]Frings M, Maschke M, Erichsen M, Jentzen W, Muller SP, Kolb FP, Diener HC, Timmann D: Involvement of the human cerebellum in fear-conditioned potentiation of the acoustic startle response: a PET study. Neuroreport 2002, 13:1275-1278.
  • [210]Garrett AS, Maddock RJ: Separating subjective emotion from the perception of emotion-inducing stimuli: an fMRI study. Neuroimage 2006, 33:263-274.
  • [211]Gottfried JA, O'doherty J, Dolan RJ: Appetitive and aversive olfactory learning in humans studied using event-related functional magnetic resonance imaging. J Neurosci 2002, 22:10829-10837.
  • [212]Grabenhorst F, Rolls ET, Margot C, Da Silva MA, Velazco MI: How pleasant and unpleasant stimuli combine in different brain regions: odor mixtures. J Neurosci 2007, 27:13532-13540.
  • [213]Hamann S, Mao H: Positive and negative emotional verbal stimuli elicit activity in the left amygdala. Neuroreport 2002, 13:15-19.
  • [214]Hamann SB, Ely TD, Hoffman JM, Kilts CD: Ecstasy and agony: activation of the human amygdala in positive and negative emotion. Psychol Sci 2002, 13:135-141.
  • [215]Herpertz SC, Dietrich TM, Wenning B, Krings T, Erberich SG, Willmes K, Thron A, Sass H: Evidence of abnormal amygdala functioning in borderline personality disorder: a functional MRI study. Biol Psychiatry 2001, 50:292-298.
  • [216]Liberzon I, Phan KL, Decker LR, Taylor SF: Extended amygdala and emotional salience: a PET activation study of positive and negative affect. Neuropsychopharmacology 2003, 28:726-733.
  • [217]Liberzon I, Taylor SF, Fig LM, Decker LR, Koeppe RA, Minoshima S: Limbic activation and psychophysiologic responses to aversive visual stimuli. Interaction with cognitive task. Neuropsychopharmacology 2000, 23:508-516.
  • [218]Liberzon I, Zubieta JK, Fig LM, Phan KL, Koeppe RA, Taylor SF: mu-Opioid receptors and limbic responses to aversive emotional stimuli. Proc Natl Acad Sci U S A 2002, 99:7084-7089.
  • [219]Maddock RJ, Garrett AS, Buonocore MH: Posterior cingulate cortex activation by emotional words: fMRI evidence from a valence decision task. Hum Brain Mapp 2003, 18:30-41.
  • [220]Meseguer V, Romero MJ, Barros-Loscertales A, Belloch V, Bosch-Morell F, Romero J, Avila C: Mapping the apetitive and aversive systems with emotional pictures using a block-design fMRI procedure. Psicothema 2007, 19:483-488.
  • [221]Mirz F, Gjedde A, Sodkilde-Jrgensen H, Pedersen CB: Functional brain imaging of tinnitus-like perception induced by aversive auditory stimuli. Neuroreport 2000, 11:633-637.
  • [222]Nitschke JB, Sarinopoulos I, Mackiewicz KL, Schaefer HS, Davidson RJ: Functional neuroanatomy of aversion and its anticipation. Neuroimage 2006, 29:106-116.
  • [223]O'doherty JP, Deichmann R, Critchley HD, Dolan RJ: Neural responses during anticipation of a primary taste reward. Neuron 2002, 33:815-826.
  • [224]Phan KL, Liberzon I, Welsh RC, Britton JC, Taylor SF: Habituation of rostral anterior cingulate cortex to repeated emotionally salient pictures. Neuropsychopharmacology 2003, 28:1344-1350.
  • [225]Rolls ET: Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiol Hung 2008, 95:131-164.
  • [226]Shirao N, Okamoto Y, Mantani T, Yamawaki S: Gender differences in brain activity generated by unpleasant word stimuli concerning body image: an fMRI study. Br J Psychiatry 2005, 186:48-53.
  • [227]Tabbert K, Stark R, Kirsch P, Vaitl D: Hemodynamic responses of the amygdala, the orbitofrontal cortex and the visual cortex during a fear conditioning paradigm. Int J Psychophysiol 2005, 57:15-23.
  • [228]Taylor SF, Liberzon I, Koeppe RA: The effect of graded aversive stimuli on limbic and visual activation. Neuropsychologia 2000, 38:1415-1425.
  • [229]Taylor SF, Phan KL, Decker LR, Liberzon I: Subjective rating of emotionally salient stimuli modulates neural activity. Neuroimage 2003, 18:650-659.
  • [230]Zald DH, Pardo JV: The neural correlates of aversive auditory stimulation. Neuroimage 2002, 16:746-753.
  文献评价指标  
  下载次数:20次 浏览次数:36次