期刊论文详细信息
BMC Medical Genomics
Distinct DNA methylation patterns of cognitive impairment and trisomy 21 in down syndrome
Michael S Kobor1  Naznin Virji-Babul3  Max S Cynader5  Eldon Emberly6  Sarah M Neumann4  Kim Watt2  Julia L MacIsaac4  Lisa M McEwen4  Pau Farré6  Meaghan J Jones4 
[1]Human Early Learning Partnership, School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
[2]Department of Psychology, Simon Fraser University, Burnaby, British Columbia, Canada
[3]Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
[4]Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
[5]Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
[6]Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
关键词: Illumina 450k human methylation array;    Aging;    Cognitive impairment;    DNA methylation;    Down syndrome;   
Others  :  1091098
DOI  :  10.1186/1755-8794-6-58
 received in 2013-08-27, accepted in 2013-12-19,  发布年份 2013
PDF
【 摘 要 】

Background

The presence of an extra whole or part of chromosome 21 in people with Down syndrome (DS) is associated with multiple neurological changes, including pathological aging that often meets the criteria for Alzheimer’s Disease (AD). In addition, trisomies have been shown to disrupt normal epigenetic marks across the genome, perhaps in response to changes in gene dosage. We hypothesized that trisomy 21 would result in global epigenetic changes across all participants, and that DS patients with cognitive impairment would show an additional epigenetic signature.

Methods

We therefore examined whole-genome DNA methylation in buccal epithelial cells of 10 adults with DS and 10 controls to determine whether patterns of DNA methylation were correlated with DS and/or cognitive impairment. In addition we examined DNA methylation at the APP gene itself, to see whether there were changes in DNA methylation in this population. Using the Illumina Infinium 450 K Human Methylation Array, we examined more than 485,000 CpG sites distributed across the genome in buccal epithelial cells.

Results

We found 3300 CpGs to be differentially methylated between the groups, including 495 CpGs that overlap with clusters of differentially methylated probes. In addition, we found 5 probes that were correlated with cognitive function including two probes in the TSC2 gene that has previously been associated with Alzheimer’s disease pathology. We found no enrichment on chromosome 21 in either case, and targeted analysis of the APP gene revealed weak evidence for epigenetic impacts related to the AD phenotype.

Conclusions

Overall, our results indicated that both Trisomy 21 and cognitive impairment were associated with distinct patterns of DNA methylation.

【 授权许可】

   
2013 Jones et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128165612343.pdf 795KB PDF download
Figure 4. 47KB Image download
Figure 3. 100KB Image download
Figure 2. 104KB Image download
Figure 1. 76KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Parker SE, Mai CT, Canfield MA, Rickard R, Wang Y, Meyer RE, Anderson P, Mason CA, Collins JS, Kirby RS, Correa A, National Birth Defects Prevention Network: Updated National Birth Prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res Part A Clin Mol Teratol 2010, 88:1008-1016.
  • [2]Van Goor JC, Massa GG, Hirasing R: Increased incidence and prevalence of diabetes mellitus in Down’s syndrome. Arch Dis Child 1997, 77:183.
  • [3]Loudin MG, Wang J, Leung H-CE, Gurusiddappa S, Meyer J, Condos G, Morrison D, Tsimelzon A, Devidas M, Heerema NA, Carroll AJ, Plon SE, Hunger SP, Basso G, Pession A, Bhojwani D, Carroll WL, Rabin KR: Genomic profiling in Down syndrome acute lymphoblastic leukemia identifies histone gene deletions associated with altered methylation profiles. Leukemia 2011, 25:1555-1563.
  • [4]Sakellari D, Arapostathis KN, Konstantinidis A: Periodontal conditions and subgingival microflora in down syndrome patients - a case–control study. J Clin Periodontol 2005, 32:684-690.
  • [5]Mann DM, Yates PO, Marcyniuk B: Alzheimer “s presenile dementia, senile dementia of Alzheimer type and Down” s syndrome in middle age form an age related continuum of pathological changes. Neuropathol Appl Neurobiol 1984, 10:185-207.
  • [6]Wisneiwski KE, Wisniewski HM, Wen GY: Occurrence of neuropathological changes and dementia of Alzheimer“s disease in Down”s syndrome. Ann Neurol 1985, 17:278-282.
  • [7]Zigman WB: Atypical aging in down syndrome. Dev Disabil Res Rev 2013, 18:51-67.
  • [8]Ismail S, Sun W, Nathoo FS, Babul A, Moiseev A, Beg MF, Virji-Babul N: A Skew-t space-varying regression model for the spectral analysis of resting state brain activity. Stat Methods Med Res 2013, 22:424-438.
  • [9]Rumble B, Retallack R, Hilbich C, Simms G, Multhaup G, Martins R, Hockey A, Montgomery P, Beyreuther K, Masters CL: Amyloid A4 protein and its precursor in Down“s syndrome and Alzheimer”s disease. N Engl J Med 1989, 320:1446-1452.
  • [10]Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K: Amyloid plaque core protein in Alzheimer disease and Down syndrome. Multe Values Selected 1985, 82:4245-4249.
  • [11]Trazzi S, Mitrugno VM, Valli E, Fuchs C, Rizzi S, Guidi S, Perini G, Bartesaghi R, Ciani E: APP-dependent up-regulation of Ptch1 underlies proliferation impairment of neural precursors in Down syndrome. Hum Mol Genet 2011, 20:1560-1573.
  • [12]Hof PR, Bouras C, Perl DP, Sparks DL, Mehta N, Morrisson JH: Age-related distribution of neuropathologic changes in the cerebral cortex of patients with down“s syndrome. Quantitative regional analysis and comparison with alzheimer”s disease. Arch Neurol 1995, 52:379-391.
  • [13]Hyman BT, West HL, Rebeck GW, Lai F, Mann D: Neuropathological changes in Down’s syndrome hippocampal formation: effect of age and apolipoprotein E genotype. Arch Neurol 1995, 52:373.
  • [14]Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan J-B, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K: Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 2013, 49:359-367.
  • [15]Liu L, Van Groen T, Kadish I, Tollefsbol TO: DNA methylation impacts on learning and memory in aging. Neurobiol Aging 2009, 30:549-560.
  • [16]Bakulski KM, Dolinoy DC, Sartor MA, Paulson HL, Konen JR, Lieberman AP, Albin RL, Hu H, Rozek LS: Genome-wide DNA methylation differences between late-onset Alzheimer’s disease and cognitively normal controls in human frontal cortex. J Alzheimers Dis 2012, 29:571-588.
  • [17]West RL, Lee JM, Maroun LE: Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient. J Mol Neurosci 1995, 6:141-146.
  • [18]Kerkel K, Schupf N, Hatta K, Pang D, Salas M, Kratz A, Minden M, Murty V, Zigman WB, Mayeux RP, Jenkins EC, Torkamani A, Schork NJ, Silverman W, Croy BA, Tycko B: Altered DNA methylation in leukocytes with trisomy 21. PLoS Genet 2010, 6:e1001212.
  • [19]Yuen RK, Neumann SM, Fok AK, Penaherrera MS, McFadden DE, Robinson WP, Kobor MS: Extensive epigenetic reprogramming in human somatic tissues between fetus and adult. Epigenetics Chromatin 2011, 4:7. BioMed Central Full Text
  • [20]Jin S, Lee YK, Lim YC, Zheng Z, Lin XM, Ng DPY, Holbrook JD, Law HY, Kwek KYC, Yeo GSH, Ding C: Global DNA hypermethylation in down syndrome placenta. PLoS Genet 2013, 9:e1003515.
  • [21]R Development Core Team: R: a Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2008.
  • [22]Price ME, Cotton AM, Lam LL, Farré P, Emberly E, Brown CJ, Robinson WP, Kobor MS: Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics Chromatin 2013, 6:4. BioMed Central Full Text
  • [23]Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, Fuks F: Evaluation of the infinium methylation 450 K technology. Epigenomics 2011, 3:771-784.
  • [24]Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD: The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012, 28:882-883.
  • [25]Johnson WE, Li C, Rabinovic A: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2006, 8:118-127.
  • [26]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:1 Article3.
  • [27]Irizarry RA, Ladd-Acosta C, Carvalho B, Wu H, Brandenburg SA, Jeddeloh JA, Wen B, Feinberg AP: Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res 2008, 18:780-790.
  • [28]Du P, Zhang X, Huang C-C, Jafari N, Kibbe WA, Hou L, Lin SM: Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinforma 2010, 11:587. BioMed Central Full Text
  • [29]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2008, 4:44-57.
  • [30]Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, Kobor MS: Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci U S A 2012, 109(Suppl 2):17253-17260.
  • [31]Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LTY, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, Gnirke A, Meissner A: Charting a dynamic DNA methylation landscape of the human genome. Nature 2013, 500:477-481.
  • [32]Maeda S, Tsukada S, Kanazawa A, Sekine A, Tsunoda T, Koya D, Maegawa H, Kashiwagi A, Babazono T, Matsuda M, Tanaka Y, Fujioka T, Hirose H, Eguchi T, Ohno Y, Groves CJ, Hattersley AT, Hitman GA, Walker M, Kaku K, Iwamoto Y, Kawamori R, Kikkawa R, Kamatani N, McCarthy MI, Nakamura Y: Genetic variations in the gene encoding TFAP2B are associated with type 2 diabetes mellitus. J Hum Genet 2005, 50:283-292.
  • [33]Tao Y, Maegawa H, Ugi S, Ikeda K, Nagai Y, Egawa K, Nakamura T, Tsukada S, Nishio Y, Maeda S, Kashiwagi A: The transcription factor AP-2{beta} causes cell enlargement and insulin resistance in 3 T3-L1 adipocytes. Endocrinology 2006, 147:1685-1696.
  • [34]Stühmer T, Anderson SA, Ekker M, Rubenstein JLR: Ectopic expression of the Dlx genes induces glutamic acid decarboxylase and Dlx expression. Development 2002, 129:245-252.
  • [35]Kraus P, Lufkin T: Dlx homeobox gene control of mammalian limb and craniofacial development. Am J Med Genet A 2006, 140A:1366-1374.
  • [36]Pasmatzi E, Vlastos D, Monastirli A, Stephanou G, Georgious S, Sakkis T, Tsambaos D: Ehlers-Danlos type IV syndrome in a patient with down syndrome: simple co-occurrence or true association? Am J Med Sci 2006, 331:48-50.
  • [37]Shi W, Hu S, Wang W, Zhou X, Qiu W: Skeletal muscle-specific CPT1 deficiency elevates lipotoxic intermediates but preserves insulin sensitivity. J Diabetes Res 2013, 2013:163062.
  • [38]Auinger A, Rubin D, Sabandal M, Helwig U, Rüther A, Schreiber S, Foelsch UR, Döring F, Schrezenmeir J: A common haplotype of carnitine palmitoyltransferase 1b is associated with the metabolic syndrome. Br J Nutr 2013, 109:810-815.
  • [39]Huang J, Dibble CC, Matsuzaki M, Manning BD: The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 2008, 28:4104-4115.
  • [40]Caccamo A, Magrì A, Medina DX, Wisely EV, López-Aranda MF, Silva AJ, Oddo S: mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 2013, 12:370-380.
  • [41]Li Y-H, Ghavampur S, Bondallaz P, Will L, Grenningloh G, Püschel AW: Rnd1 regulates axon extension by enhancing the microtubule destabilizing activity of SCG10. J Biol Chem 2009, 284:363-371.
  • [42]Ishikawa Y, Katoh H, Negishi M: Small GTPase Rnd1 is involved in neuronal activity-dependent dendritic development in hippocampal neurons. Neurosci Lett 2006, 400:218-223.
  • [43]Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, Reinius L, Acevedo N, Taub M, Ronninger M, Shchetynsky K, Scheynius A, Kere J, Alfredsson L, Klareskog L, Ekström TJ, Feinberg AP: Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 2013, 31:142-147.
  • [44]Lowe R, Gemma C, Beyan H, Hawa MI, Bazeos A, Leslie RD, Montpetit A, Rakyan VK, Ramagopalan SV: Buccals are likely to be a more informative surrogate tissue than blood for epigenome-wide association studies. Epigenetics 2013, 8:445-454.
  • [45]Barlow GM, Chen XN, Shi ZY, Lyons GE, Kurnit DM, Celle L, Spinner NB, Zackai E, Pettenati MJ, Van Riper AJ, Vekemans MJ, Mjaatvedt CH, Korenberg JR: Down syndrome congenital heart disease: a narrowed region and a candidate gene. Genet Med 2001, 3:91-101.
  • [46]Habib SL, Michel D, Masliah E, Thomas B, Ko HS, Dawson TM, Abboud H, Clark RA, Imam SZ: Role of tuberin in neuronal degeneration. Neurochem Res 2008, 33:1113-1116.
  • [47]Chong ZZ, Shang YC, Wang S, Maiese K: Shedding new light on neurodegenerative diseases through the mammalian target of rapamycin. Prog Neurobiol 2012, 99:128-148.
  • [48]Ferrando-Miguel R, Rosner M, Freilinger A, Lubec G, Hengstschläger M: Tuberin–a new molecular target in Alzheimer's disease? Neurochem Res 2005, 30:1413-1419.
  • [49]Choi YJ, Di Nardo A, Kramvis I, Meikle L, Kwiatkowski DJ, Sahin M, He X: Tuberous sclerosis complex proteins control axon formation. Genes Dev 2008, 22:2485-2495.
  • [50]Chakraborty S, Mohiyuddin SMA, Gopinath KS, Kumar A: Involvement of TSC genes and differential expression of other members of the mTOR signaling pathway in oral squamous cell carcinoma. BMC Cancer 2008, 8:163. BioMed Central Full Text
  • [51]Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, Cross MK, Williams BA, Stamatoyannopoulos JA, Crawford GE, Absher DM, Wold BJ, Myers RM: Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res 2013, 23:555-567.
  文献评价指标  
  下载次数:33次 浏览次数:29次